فروشگاه نیک فایل

فروشگاه نیک فایل، فروشگاه فایلهای دانشجویی و دانش آموزی در زمینه های مختلف می باشد.

فروشگاه نیک فایل

فروشگاه نیک فایل، فروشگاه فایلهای دانشجویی و دانش آموزی در زمینه های مختلف می باشد.

دانلود فایل کاربرد فلو سنجها در آلومینای جاجرم FLOWMETERS USE IN JAJARM ALUMINA

دردنیای صنعتی امروزی که هر لحظه علم الکترونیک وصنعت نیمه هادیها روبه پیشرفت می باشد شاهد وارد شدن روز افزون انها در تمام زندگی بشر بوده ومیتوان گفت زندگی بدون استفاده ازانها برای انسان ناممکن شده است
دسته بندی برق
فرمت فایل doc
حجم فایل 6026 کیلو بایت
تعداد صفحات فایل 75
کاربرد فلو سنجها در آلومینای جاجرم FLOWMETERS  USE IN JAJARM ALUMINA

فروشنده فایل

کد کاربری 1024

کاربرد فلو سنجها در آلومینای جاجرم FLOWMETERS USE IN JAJARM ALUMINA

خلاصه

دردنیای صنعتی امروزی که هر لحظه علم الکترونیک وصنعت نیمه هادیها روبه پیشرفت می باشد شاهد وارد شدن روز افزون انها در تمام زندگی بشر بوده ومیتوان گفت زندگی بدون استفاده ازانها برای انسان ناممکن شده است . با توجه به پیشرفت علوم کامپیوتر در این دوره ، انجام وکنترل تمام کارها توسط ان به سرعت افزایش یافته و دیگر نیازی به کارطاقت فرسا ونیروی انسانی زیاد ، نمی باشد.

همانطور که در بالا اشاره شد این صنعت خیلی زود درکارخانجات وجایی که نیروی انسانی دران نقش عمده ای را ایفا می کردوارد شده ودنیا را متحول کرد،این تحول بنام اتوماسیون صنعتی ثبت گردید.دراتوماسیون صنعتی شاهد دقت بالا ، افزایش تولید ، سرعت بالا ،کاهش نیروی انسانی ،کیفیت مطلوب ،مشکلات کمتر و رفع سریعتر مشکلات و در نهایت سود اقتصادی بسیار بالا هستیم .

اندازه گیری یکی ازشاخه های مهم درصنعت اتوماسیون بوده که بنام ابزار دقیق درهرکارخانه یا کارگاهی ارائه می شود و بخش دیگر اتوماسیون، کنترل می باشد . علم ابزار دقیق ، اندازه گیری تمام پارامتر های فیزیکی یا شیمیایی یک پروسه صنعتی در هر لحظه و تبدیل این پارامترها به سیگنالهای الکتریکی قابل قبول برای بخش کنترل می باشد .با ورود این سیگنالها از یک طرف و ورود برنامه های فرایندی به فرم نرم افزار از طرف دیگر به بخش کنترل ارائه خروجی مناسب از ان را شاهد هستیم که این خروجی ها به انواع مختلف سیگنالهای الکتریکی برای کنترل پروسه صنعتی ارسال میگردد.. پارامترهای فیزیکی مانند اندازه گیری فشار ، دما ، فلو ، جابجایی ، دانسیته ‌، ویسکوزیته ، وزن و غیره و پارامترهای شیمیایی اندازه گیری مانند شناخت درصد ترکیبات عناصر یا ملکولهای خاصی(مثل کلر موجود در اب واکسیژن موجود در هوا ودرصد اسیدی وبازی سیالات و.......)در مواد و نقاط مختلف می باشد.

در کارخانه الومینای جاجرم انواع مختلفی از سنسورهای ابزار دقیقی از لحاظ نوع پارامتر مورد اندازه گیری ، رنج اندازه گیری ، کاربرد در مکانهای مختلف ، شرکتهای سازنده ، دقت در اندازه گیری و غیره وجود دارند. عنوان پایان نامه بنده فقط در مورد اندازه گیری فلو در این کارخانه می باشد که این فلو مکن است مربوط به مایعات ،گازها و جامدات باشد . روشهای اندازه گیری فلو بسیار زیاد بوده و فقط از چند روش مذکور در این کارخانه استفاده شده است:

1- فلومتر های مغناطیسی

2- فلومتر های هیدروستاتیک(ونتوری-اوریفیس - پیتوت )

3- فلومتر های توربینی در انواع مختلف .

از این سه روش فقط برای اندازه گیری فلوی سیالات و گازها استفاده می شود وفقط یک روش برای اندازه گیری جامدات عبوری از روی نوار نقاله ها به صورت سیستم توزین می باشد.

این پایان نامه شامل سه بخش اصلی می باشد که در زیر به تفسیر تک تک انها می پردازیم:

بخش اول: شامل توضیحات مختصری در باره سه بخش کارخانه الومینا ( قرمز – سفید- جانبی) بوده و در ضمن تمام واحدهای مر بوط به هر بخش را از لحاظ کارکرد وکاربرد فلو سنج ها در ان تشریح می کنم .

بخش دوم: بعلت کثرت استفاده از فلومتر مغناطیسی در این کارخانه فقط به توضیح و تفسیر کامل این تجهیز پرداخته و در این اصول کار- ساختار- کاربردها- مزیتها - معایب می پر دازیم.

بخش سوم :در بخش سوم این پایان نامه نیز به دلیل بالا تشریح کامل فلومتر های هیدروستاتیکی را در نظر گرفته و با ارائه قانون برنولی واستفاده از ان در این فلومتر به تشریح تک تک فلومتر ها ی اوریفیس ونتوری وپیتوت می پردازیم .

بعلت کثرت مطالب از تحقیق در باره فلومتر های تور بینی و مسی و سیستمهای توزین خودداری کرده، بخش یک به محلهایی که این تجهیزات در آنها استفاده شده است را یاد آور میشود .

فصل اول

خلاصه ای از عملکرد واحدهای عملیاتی و کاربرد فلوسنجها در انها

1-1- مقدمه

در کارخانه الومینای جاجرم انواع مختلفی از سنسورهای ابزار دقیقی مختلف ازلحاظ پارامترها ورنج مورد اندازه گیری ، شرکتهای سازنده ، دقت مورد اندازه گیری وغیره بکاررفته است که بنده بنا بعنوان پروژه تحقیقاتی خود اندازه گیرهای فلو را انتخاب کرده ام.

فلو میزان مواد عبوری ازخط(گاز، سیال ، جامد‌‌ )درواحد زمان می باشدکه این خطوط ممکن است خط

لوله یا نوار نقاله در رنجهای مختلف و با اشکال مختلف باشد.فلو را به تعبیر دیگرمیتوان همانند جریان

الکتریکی عبوری از یک سیم در نظرگرفت همانطورکه برای اندازه گیری جریان الکتریکی روشهای مختلف (از لحاظ رنج ودقت) وجود دارد دراندازه گیری فلو مواد نیز روشهای زیادی وجود دارد که به شرایط مختلفی وابسته است.

شرایط استفاده از انواع مختلف این فلو مترها به قرار زیر می باشد.

1- محل نصب در کارخانه که بسته به جنس مواد مصرفی در ساخت فلومتر دارد.

2-رنج اندازه گیری (نسبت میزان فلو در خط).

3-ارزش اقتصادی ماده مورد اندازه گیری .

4-دقت مورد نیاز برای ایجاد کنترل کیفیت مناسب در پروسه های بعد از فلومتر.

5-قیمت اقتصادی انهادر کاربرد مورد نظر .

6- تعمیر و نگهداری اسان با عمر مفید .

7-ارائه سیگنال الکتریکی متناسب با تجهیزات کنترلی .

مثلآدریک مثال بسیارکوچک درکوره های حرارتی باید میزان درجه حرارت تولیدی متناسب با ماده گرم شونده باشد وبرای این نیز میزان مصرف سوخت با هوای احتراق و گرمای تولیدی تناسب دارد و اندازه گیری سوخت وهوا توسط فلومترها صورت می گیرد حال اگر در اثرخرابی فلومترها (عدم فلومتر) هوای اضافی وارد سیستم شود برای رسیدن به دمای مورد نظر باید سوخت بیشتری وارد کوره شود ودرنهایت چیزی جزگرم کردن هوای اضافی وهدررفتن سوخت و ضرر اقتصادی نصیب ما نخواهد شد.

ازمورد بالا ما درمی یابیم که تمام تجهیزات اندازه گیری بسیارمهم بوده و دررشد اقتصادی کشوربسیار

مؤثر می باشد.

1-2- بخش یک (واحدهای قرمز )

در این بخش بنده به توضیحات بسیارمختصری درباره واحدهای عملیاتی بخش یک پرداخته، وجود یا عدم وجود فلومترها ونقش انها را درواحدهای مربوط به این بخش تشریح خواهم کرد.دراین واحدها بیشتر خردایش بوکسیت، اهک و مخلوط کردن انها با اب وسود و تهیه دوغاب بوکسیت ودرنهایت انحلال اکسید الومینیوم دردوغاب انجام می پذیرد و نگاه مختصری به این اعمال همراه با فلوسنجهای کاربردی دراین بخش کرده وبه اهمیت این تجهیزات در صنعت پی خواهیم برد .

ابتدا درواحد 01 سنگ بوکسیت انتقال داده شده توسط کامیون ازمعادن همجوارتوسط سنگ شکنهای فکی و چکشی خرد می گردد و ابعاد ریزتراز 20میکرو توسط نوار نقاله به قسمت هموژنیزاسیون و انبار

بوکسیت در واحد 02 انتقال می یابددر ورودی واحد 02 مقدار بوکسیت توسط یک سیستم توزین بر حسب تن بر ساعت اندازه گیری شده واین سیستم درزیرنوارنقاله نصب گردیده وفلوی مواد جامدرا اندازه می گیرد و بعد از هموژنیزاسیون دوباره در همان واحد برای ارسال به واحد 08انبار می شود .

در واحد 03 نیزسنگ آهکی که از معدن اهک توسط کامیون به کارخانه ارسال شده توسط یک سیستم سرند به سه نوع سنگ با ابعاد مختلف جدا سازی می شود ودو نوع ان بوسیله نوار نقاله به محل انبارسرباز انتقال یافته ودردو انبار مجزا ذخیره می شود . درورودی 04 مقدار فلوی اهک توسط سیستم توزین اندازه گیری شده (برحسب تن بر ساعت ) و به کوره ها ارسال می گردد .

درواحد 04 مقدار کافی اهک برای تآمین نیازهای فرایند در مرحله شیر اهک جهت بازیابی سودسوزآور از گل قرمزدر واحد 14 وهمچنین درمراحل قبل ازانحلال به منظورسلیس زدایی وکاتالیزورانحلال تولید می

شود ودرهرکوره یکی ازدونوع سنگ پخت می شود. دراین واحدازکوره حرارتی مازوت سوزکه اخیرآ دو سوخته نیز شده است (گاز طبیعی) استفاده شده است و میدا نیم که درکوره های حرارتی نسبت ترکیب سوخت وهوا بسته به مقداردمایی ایجادشونده دران کوره دارد که برای این منظور روی خط سوخت مازوت از فلومترهای توربینی و خط هوااز فلومترپیتوت استفاده شده است و میزان ترکیب هوا وسوخت برای ایجاد دمای معین توسط کنترل ولوهای روی خط سوخت و دمپرهای روی خط هوا که قبل از فلومترهانصب شده اند با توجه به میزان فلو تنظیم می شوند و لوپ کنترلی را ایجاد کرده وباعث تنظیم کوره در یک دمای معین درحجم هوای ثا بت خواسته شده می شود. واحد اندازه گیری مورد استفاده برای فلو سیالات و گازها دراین کارخانه بیشتر متر مکعب بر ساعت می باشد .

در واحد 05 برای تهیه شیر اهک ،آب و آهک را به نسبت خاصی مخلوط کرده وآنرا تهیه می کنیم برای اندازه گیری میزان اب مصرفی دراین پروسه ازفلومترهای نوع اوریفیس وبرای اهک از فلومترهای چشمی (پیمانه ای)مکانیکی بدون سیگنال الکتریکی خاصی استفاده کرده و این دو را با هم مخلوط کرده وبااستفاده از پیمانه های آهک، شیراهک را به دانسیته خاصی برای مصرف سایت می رسانند و جهت ارسال به واحد های مصرفی بعد ازپمپ های سرعت متغییرفلومترهای نوع مگنتی قرار داده و میزان ارسال ان را به واحد

های دیگر کنترل می کنند.

در واحد 08 ، بوکسیت هموژنیزه خروجی از واحد 02 و آهک پخته شده خروجی از واحد 04 و محلول سود سوزآور رقیق درآسیاب استوانه ای شکل مرطوب کاملآ نرم و ریز می گردد و برای این کار سه خط کامل آسیاب پیش بینی شده است و میزان فلوی بوکسیت وآهک برای هر خط جداگانه توسط سیستم توزین و برای سود سوزاور توسط فلومترهای مگنت اندازه گیری شده تا درصد خاصی از این سه مخلوط و دوغاب مورد نظر ایجاد شود .

در واحد 09 این امکان فراهم می گردد تا بخشی از سیلس فعا ل موجود در اسلاری1(دوغاب )بوکسیت با مواد پیرامون خود وارد واکنش شده و تبدیل به ترکیباتی غیر فعال در شرایط انحلال شود. برای این منظور اسلاری بوکسیت را دردرجه حرارت100 درجه سانتی گراد به مدت 8 ساعت نگهداری می کنند و بامحلول سود سوز اور به میزان خاصی که توسط فلومترهای مگنتی اندازه گیری می شود مخلوط وبه واحد پمپاژ ارسال می گردد.

درواحد 10پمپاژ توسط چهارپمپ بسیارقوی که به پمپ های گهو2 معروف می باشد اسلاری بوکسیت

سیلسی زدایی شده با فشار حداقل 145 بار به واحد انحلال ارسا ل می گردد در این واحد فلومترها فقط

در ورودی پمپ های گهو بوده و از نوع مگنتی می باشد.

1- slurries

2- GEHO (موتورهای جریان مستقیم ساخت هلند با قدرت بسیار بالا میباشند.)

در واحد 11 اسلاری بوکسیت تا دمای 270درجه سانتی گراد در کوره های حرارتی (مازوت وگاز) گرم

می شود و براثر این گرما فشاردرلوله ها زیاد شده و اسلاری از فازمایع به فازگازی تبدیل می گردد و در نتیجه موجب انحلال اکسیدآلومینوم بوکسیت دردوغاب می شود و توسط فلاش تانکهای فشار ان کاهش پیدا کرده ، فشار به اتمسفر و فاز مایع برمی گردد .واحد 11 دارای چهارخط مجزا می باشد در قسمت کوره های حرارتی آن ازفلومترهای توربینی وبرای خروجی مواد ازتانک ذخیره واحد از فلومترهای مگنتی استفاده شده است در ضمن این واحد یک سیستم بسته می باشد که برای پیش گرم شدن اسلاری از بخار گرفته شده از فلاش تانکها استفاده شده و دمارا قبل از کوره ها به 250درجه سانتی گراد می رسانند .در ضمن برای استفاده بهینه از سوخت در بالای کوره بویلری تعبیه شده که تولید بخار می نماید و اب ورودی وبخار خروجی از انها توسط فلومترهای اوریفیس اندازه گیری می شود .

1- 3- بخش دو (واحدهای سفید)

در واحد 12 اسلاری الومینات پس از خروج از واحد 11 توسط سر ریز محلول شستشوی گل قرمز از واحد 14 و همچنین محلول رقیق سود سوزآور به دست امده از فیلتراسیون هیدرات ازواحد17 رقیق می شود تا امکان ته نشین شدن بهتر ذرا ت گل قرمز فراهم می گردد خروجی از واحد 12 توسط فلومترهای مگنتی اندازه گیری می شود .

در واحد 13و14 محلول لیکور الومینیوم از گل قرمز توسط سر ریز تیکنرها1و دو مرحله فیتراسیون جدا شده وگل قرمز به سد باطله فرستاده می شود و محلول لیکورآلومینا به واحد های بعد ارسال می شود برای ته نشین بهتر و سریعتر در تیکنرها از ماده فلو کلانت استفاده می شود تمام فلومترهای این دو بخش از نوع مگنتی بوده بجز مواردی که برای فلوی آب یا کندانس و بخار از اوریفیس استفاده شده است .

واحدهای 16و17مربوط به جوانه زدن آلومینا در تانکها می باشد , بعد از جوانه زدن و بزرگ شدن دانه

های الومینا در واحد 17 , الومینا از سود و آب جدا شده توسط فیلتر های درام2 جدا می شود وبا نوارنقاله

1- TIKNER (فرق ان با TANK در این است که قطر ان از ارتفاعش خیلی بیشتر می باشد.)

2- DRAM (نوعی فیلتر استوانه ای برای جدا سازی مواد جامد از مایع توسط وکیوم میباشد.)

به واحد بعدی ارسال می گردد تمام فلومترهای این واحد نیزازانواع مگنتی بوده بجزموارد اندازه گیری آب وبخار و کندانسکه از نوع اوریفیس می باشد.

خروجی از واحد 17 هیدرات آلومینا نام داشته که توسط سیستم توزینی که در زیر نوار نقاله نصب گردیده است اندازه گیری می شود و در واحد 19 انبار می شود , مجموعه نوار نقاله های انتقال این دو بخش را واحد 20 نامگذاری کرده اند.

در واحد18 فقط غلظت سود رقیق شده را افزایش داده و از بخاربرای ایجاد حرارت استفاده می کنند.و فلو سنجهای روی خطوط سود مگنتی و روی خطوط اب وبخار اوریفیس میباشد .

در واحد 19 هیدرات توسط نوار نقاله ها به مخزن ورودی واحد 21 رفته و در ان واحد هیدرات به پودر الومینا تبدیل می شود واحد 21 شامل چندین برنر1 (مشعل) بوده که تقریبآ مانند واحدهای پخت سیمان می باشد . تمامی این مشعل ها دوگانه سوز(مازوت وگاز)کار می کنند و تمام فلوسنجهای نصب شده جهت سوخت ورودی به انها از نوع توربینی وبسیاردقیق می باشد . بعد ازتولید, الومینا درسیلوهای واحد15 انبار می گردد و درانجا بارگیری کامیون و واگن انجام می پزیرد فقط در ورودی هیدرات به واحد 21 از سیستم توزین نصب شده در زیر نوار نقاله ورودی استفاده شده است .

1-4- واحدهای جانبی2

این کارخانه دارای چندین واحد جانبی جهت کمک به واحدهای اصلی(موجود در بخش 1و2 )، می باشد که تک تک به توضیح مختصری در باره انها و فلومترها ی نصب شده در انها می پردازیم .

1- برای تولید هوای ابزار دقیق (واحد 22) واحدی شامل سه کمپرسور که هوا با فشار 7 بار تولید می کند وجود دارد و بسته به میزان مصرف هوا در واحدها زمان زیر بار رفتن کمپر سورها تنظیم می شود در ضمن از یک فلو متر اوریفیس برای تعیین میزان هوای مصرفی در خروجی واحد استفاده شده است .

2 - برای تولید بخار مصرفی کارخانه (واحد24 )از سه بویلر استفاده شده است که از سه نوع سوخت (گاز, گازوئیل, مازوت) برای ان استفاده می شود و برای تنظیم هوای احتراق از فلومتر ونتوری و تنظیم

فهرست مطالب


"عنوان" "صفحه"

1 خلاصه

فصل اول : خلاصه ای از عملکرد واحد های عملیاتی و کاربرد فلو سنجها در آنها

1-1- مقدمه 4

1-2- بخش یک (واحدهای قرمز) 5

1-3- بخش دو (واحدهای سفید) 7

1-4- بخش سه (واحدهای جانبی) 8

فصل دوم : فلومترهای مغناطیسی

2- 1- اصول کار 11

2-1-1- القای AC و DC 13

2-1-2- القاء با دو فرکانس 16

2 – 2 – ساختار 18

2-2-1- لاینرهای سرامیکی 22

2-2-2- مدارات الکترونیکی و هوشمند 24

2-2-3- ظرفیت ورنج 25

2 – 3 – کاربردها 26

2 – 4 – نصب 31

2 – 5 – مشخصات 32

2-5-1- مزیتها 32

2-5-2- محدودیتها 34

فصل سوم : فلومترهای هیدروستاتیک

3-1- مقدمهای بر اندازه گیری فلو به روش اختلاف فشار 37

3-1-1- تئوری برنولی 37

3-1-2- قانون جذر در جریان سیال 42

3-2- محاسبه قطر اوریفیس 46

3-3- ونتوری ها 48

3-3-1- لوله های ونتوری 48

3-3-2- نازلهای جریان 50

3-3-3- لوله های جریان 51

3-4- لوله پیتوت 52

3-5- مشخصات صفحه اورفیس 54

3-6- افت فشار دائمی در سیستم 56

3-7- اتصال لوله های فشار از المنت اولیه به وسایل اندازه گیری 57

3-8- مقایسه لوله ونتوری و صفحه اوریفیس 59

3-9- وسایل اندازه گیری اختلاف فشار 60

3-9-1- مدرج کردن جریان سنج 60

3-9-2- انواع وسایل اندازه گیری اختلاف فشار 62

3-9-3- اندازه گیری اختلاف فشار به روش الکتریکی 64

پیوستها 69

منابع 72

خلاصه انگلیسی 73


دانلود فایل روشهای موجود برای بررسی شبکه حمل و نقل بعد از بروز زلزله

بروز زلزله های شدید بخصوص در شهرهای بزرگ می تواند آسیبهای انسانی گسترده‌ای را بهمراه آورد
دسته بندی جغرافیا
فرمت فایل doc
حجم فایل 100 کیلو بایت
تعداد صفحات فایل 124
روشهای موجود برای بررسی شبکه حمل و نقل بعد از بروز زلزله

فروشنده فایل

کد کاربری 1024

روشهای موجود برای بررسی شبکه حمل و نقل بعد از بروز زلزله


بروز زلزله های شدید بخصوص در شهرهای بزرگ می تواند آسیبهای انسانی گسترده‌ای را بهمراه آورد. شکبه حمل و نقل برای نجات جان و مجروحین زلزله را ارائه سریع و خدمات درمانی به آنان ، نقش اساسی دراد. لذا از شبکه حمل و نقل بعنوان شریان حیاتی نامرده می‌شود. برای کاهش آسیبهای انسانی احتمالی زلزله در هر شهر یا منطقه‌ای نیازمند به ارزیابی عملکرد شبکه حمل و نقل در پاسخگویی به تقاضا، برای سفرها ی امدادی بعد از زلزله می باشیم تا بتوایم ضمن کسب آمادگی لازم برای مقابله با بحران، اولویت بندی اجزاء شبکه را از نظر بازسازی تعیین نماییم.

در این سمینار به ارزیابی عملکرد شبکه حمل و نقل برای انجام سفره های امدادی بعد از بروز زلزله با توجه به عرضه و تقاضا پرداخته شده است روش ارائه شده دارای پنج مرحله است.

ابتدا سناریو های مختلف زلزله تعین می گردد. سپس میزان آسیبهای احتمالی شبکه حمل و نقل و وضعیت مراکز امدادی (عرضه) و تعداد مجروحین (تقاضا) شبیه سازی می گردد. برای اینکار از نمونه سازی مونت کارلو و LHS و توابع خرابی اجزاء آسیب‌ دیده شبکه بدست می آید در مرحله بعدی توزیع و تخصیص سفرها انجام می‌شود و سرانجام معیارهای ارزیابی شبکه، مانند زمان سفر برای هر سناریو برآورد می گردد. در این سمینار شبکه های مختلفی مورد تحلیل قرار گرفته است. به کمک این روش می توان ضمن ارزیابی شبکه حمل و نقل بعد از زلزله، به برآوردی از وضعیت بحران بعد از زلزله دست یافت. همچنین مسیرها را اولیت بندی نموده و برای توسعه یا ایجاد دست یافت. همچنین مسیرها را اولیت بندی نوده و برای توسعه یا ایجاد راههای جدید تصمیم گیری کرد. مراکز امدادی موجود را از نظر انجام تقویت اولیت بندی کرده و یا مراکز امدادی جدید را امکان یابی کرد، برای اولیت بندی کرده و یا مراکز امدادی جدید را مکان یابی کرد. برای مدیریت بحران و کنترل ترافیک پیش‌‌بینیها لازم انجام داده و تاثیر آنها را در عملکرد اجزاء شبکه حمل و نقل محاسبه کرد. این روش جدای از زلزله می تواند در مورد دیگری که شبکه حمل و نقل اعم ا شهری یا منطقه ای در معرض آسیب و کاهش ظرفیتهای احتمالی قرای می گیرد. مانند بارش باران یا برف سنگین و بروز تصادفات یا بمبارانهای هوائی مورد استفاده قرار گیرد.

فهرست

عنوان صفحه

1-1 مقدار................................................................................................................... 2

1-2 اهداف و دست آوردهای پروژه‌........................................................................... 5

2 بررسی کارهای انجام شده تاکنون............................................................................ 8

2-1 عملکرد اجزای شبکه بصورت مستقل................................................................. 9

2-1-1 عملکرد فیزیکی و آسیب پذیری..................................................................... 10

2-1-2 کارآیی............................................................................................................ 11

2-2-1 ازائة معیارهای کارایی..................................................................................... 11

2-2-2 بررسی تأخیرهای وارد از خرابی.................................................................... 17

2-2-3 اولیت دهی پلها برای بازسازی........................................................................ 20

2-3عملکرد کلی شبکة حمل و نقل............................................................................ 23

2-3-1 بررسی معیارهای کارایی شکبة تخریب شده................................................... 24

2-3-3 برآوردتأخیرهای وارده از خرابی..................................................................... 35

2-3-4 ارزیابی سیستم بیمارستانی منطقه‌ای............................................................... 38

2-3-5 ارزیابی ریسک منطقه‌ای................................................................................. 42

2-3-6زمان جمع شدن افراد امداد رسان..................................................................... 47

2-4سفرهای ترافیکی بعد از زلزله.............................................................................. 50

2-4-1-رابطة بین حجم سفرها و بازسازی بعد از زلزله............................................. 50

4-1 عملکرد شبکه‌های حمل و نقل ایران در زلزله‌های گذشته................................... 54

4-2 عملکرد شبکه های ح0مل و نقل دنیا در زلزله های اخیر.................................... 55

4-2-1زلزله کوبه ژاپن 1995...................................................................................... 56

4-2-1-1 پلها و راههای اصلی کوبه........................................................................... 57

4-2-1-2 راه آهن کوبه.............................................................................................. 59

4-2-1-3 سیستم متروی کوبه.................................................................................... 60

4-2-1-4 فرودگاههای اطراف کوبه............................................................................ 60

4-2-2 لزله نورث ریج. کالیفرنیا آمریکا 1994........................................................... 60

4-2-3 زلزله لوما پریتا، آمریکا 1989......................................................................... 61

4-2-4 زلزله ارمنستان 1988...................................................................................... 62

4-2-5 زلزله کاستاریا 1991....................................................................................... 63

4-2-6 زلزله مکزیکوسیتی، مکزیک 1995................................................................. 63

4-2-7 زلزله فیلیپین 1990......................................................................................... 63

4-2-8 زلزله ازمیت ترکیه 1999................................................................................ 63

5ستاریوی زلزله.......................................................................................................... 68

5-1کارهای انجام شده دردنیا در زمینه طراحی برمبنای سناریوی زلزله...................... 69

5-2پارامترهای موثر در تعریف سناریو....................................................................... 69

5-2-1 زلزله............................................................................................................... 70

5-2-2 مقیاس اندازه گیری زلزله............................................................................... 72

5-2-3 آنالیز زلزله ..................................................................................................... 72

5-2-4 پهنه بندی لرزه ای.......................................................................................... 72

5-2-5 روش‌ پهنه بندی حرکات زمین تحت اثر زلزله............................................... 73

5-2-5-1 لرزه خیزی................................................................................................. 73

5-2-5-2 کاهش شدت حرکات زمین در اثر دورشدن از مرکز زلزله......................... 73

5-2-5-3اثرات وضعیت محل برروی حرکات زمین لرزه.......................................... 74

5-2-6بررسی اثرات وضعیت محل برای پهنه بندی با دقت کم.................................. 74

5-2-7بررسی اثرات وضعتی محل برای پهنه‌بندی با دقت کم.................................... 74

5-2-8 بررسی اثرات وضعیت محل برای پهنه‌بندی با دقت زیاد................................ 75

5-2-9کارهای انجام شده در دنیا درزمینه پهنه‌‌بندی لرزه........................................... 76

6 تقاضا....................................................................................................................... 79

6-1 سفرهای خدماتی................................................................................................ 80

6-2 سفرهای امدادی.................................................................................................. 82

6-3 برآورد مجروحین................................................................................................ 84

6-3-1 ناحیه بندی ساختمانها.................................................................................... 85

6-3-2 طبقه بندی ساختمانها..................................................................................... 86

6-3-3 برآورد آسیبهای وارده به ساختمانها................................................................ 86

6-3-4 نسبت تلفات انسانی....................................................................................... 91

6-3-4-1 اعتبار سنجی تلفات برای شهرتهران........................................................... 95

6-3-4-2 برآورد تلفات برای شهرتهران................................................................... 96

7 بررسی رفتارهای انسانی.......................................................................................... 99

7-1 رفتار رانندگان در هنگام وقوع زلزله.................................................................. 100

7-1-1 عوامل موثر در وضعیت رفتار رانندگان....................................................... 100

7-1-2 مشکلات احتمالی ناشی از رفتار رانندگان وعوامل تشدید کنندة‌آن.............. 102

7-1-2-1اشغال سطح خیابانها................................................................................. 102

7-1-2-4 بروز تصادفات احتمالی........................................................................... 103

7-1-2-5 وسایل نقلیه رها شده.............................................................................. 104

7-1-2-6 هراس ناشی از زلزله و عواقب آن........................................................... 104

7-1-2-7 افزایش طول سفرها دراثر عدم اطلاع...................................................... 104

7-1-3 راههای مواجهه با این مشکلات.................................................................. 104

7-1-3-1 آموزش و اطلاع رسانی........................................................................... 105

7-1-3-2 تخلیه و بازگشایی مسیر.......................................................................... 105

7-2 رفتار رانندگان در استفاده از شبکه بعد از زلزله................................................ 106

7-3 رفتار نیروهای امنیتی و امدادی ....................................................................... 107

7-4 رفتار نیروهای مدیریت امدادی و انتظامی........................................................ 111

8 برآورد عرضه........................................................................................................ 115

8-1 برآورد شبکة حمل و نقل بعد از زلزله............................................................. 115

8-1-1 اجزاء شبکه.................................................................................................. 115

8-1-1-1 راهها ...................................................................................................... 115

8-1-1-2 تقاطعات ............................................................................................... 117

8-1-1-3 پلها ........................................................................................................ 119

8-1-2 پارامترهای ارزیابی شبکه............................................................................. 120

8-1-3 خرابی‌های مستقیم شبکه‌حمل و نقل بعد از زلزله....................................... 121

8-1-3-1 خرابی بدنة راه ....................................................................................... 122

8-1-3-2 تونل ...................................................................................................... 124

8-1-3-3 خرابی پل............................................................................................... 125

8-1-3-4 منحنیهای شکنندگی یا خرابی پلها.......................................................... 126

8-1-4 خرابی های غیر مستقیم شبکه حمل و نقل بعداززلزله................................ 130

8-1-4-1 خرابی تأسیسات جانبی مسیر................................................................. 131

8-1-4-2 عوامل ترافیکی....................................................................................... 131

8-2 برآورد مراکز امداد رسانی................................................................................ 132

8-2-1 پارامترهای مهم برای ارزیابی مراکز امدادی................................................. 133

8-2-2 ظرفیت پذیرش مجروح.............................................................................. 134

8-2-3 عملکرد بیمارستان بعد از زلزله.................................................................... 135

8-2-4 خرابی بیمارستانها........................................................................................ 136

9 توزیع................................................................................................................... 140

9-1 شبیه سازی...................................................................................................... 140

9-1-1 روشهای ضریب رشد.................................................................................. 142

9-1-2 ضریب رشد بکنواخت................................................................................. 143

9-1-3 روش میانگین ضریب رشد ........................................................................ 143

9-1-4 مدل فراتر ................................................................................................... 144

9-1-5 مدل دیترویت ............................................................................................. 145

9-1-6 ضرایب رشد با محدودیت دوگانه (روش فورنیس)..................................... 145

9-1-7 مزایا و معایب ضریب رشد.......................................................................... 146

9-1-8 مدل جاذبه .................................................................................................. 147

9-1-9 محدودیتهای مدل جاذبه ............................................................................. 149

9-1-10 مدل فرصت بینابینی ................................................................................. 150

9-2 توزیع به کک مدلهای برنامه ریزی خطی......................................................... 152

9-3 مقایسة بین مدلهای توزیع ............................................................................... 155

10 مدلهای تخصیص .............................................................................................. 159

10-1 تخصیص به روش هیچ یاهمه (کوتاهترین مسیر).......................................... 160

10-1-1 الگوریتم کوتاهترین مسیر.......................................................................... 161

10-2 تخصیص تعادل ی (ظرفیت محدود)............................................................. 162

10-2-1 روند تخصیص افزایشی............................................................................ 164

10-2-2 روند با سرعت تغییرات زیاد و کم............................................................ 165

10-3-3 روند میانگین متوالی ................................................................................ 165

10-3 تخصیص احتمالاتی ...................................................................................... 166

10-3-1 تخصیص احتمالاتی برمبنای شبیه‌سازی.................................................... 166

10-3-2 تخصیص احتالاتی نسبی .......................................................................... 168

10-4 روش برنامه ریزی خطی .............................................................................. 168

10-5 روشMcLaughiln .................................................................................. 169

11 تحلیل ریسک ................................................................................................... 171

11-1 شبیه سازی مونت کارلو................................................................................. 171

11-1-1 مزایای نمونه سازی مونت کارلو............................................................... 173

11-2 نمونه سازیLatin Hyper cube یا LHS ............................................... 173

11-3 مقایسه بین نمونه سازیLHS و مونت کارلو................................................ 175

11-4 توابع توزیع برای شبیه سازی......................................................................... 176

11-4-1 توابع توزیع............................................................................................... 177

11-5- دقت برآوردهای احتمالاتی.......................................................................... 177

12 ارائه مدل ........................................................................................................... 182

12-1 سناریوی زلزله .............................................................................................. 182

12-2 برآورد تقاضا ................................................................................................. 184

12-3 برآورد عرضه ................................................................................................ 188

12-3-1 برآورد شبکه حمل ونقل........................................................................... 189

12-3-2-1 @ Risk ............................................................................................ 192

12-4-1 الگوریتم کوتاهترین مسیر ........................................................................ 194

12-4-2 برنامه ریزی خطی ................................................................................... 195

12-4-3 نرم افزار مدل ........................................................................................... 196

12-4-4 قابلیت توسعه ........................................................................................... 197

12-4-4-1 درنظر گرفتن ترافیک غیرامدادی رسانی............................................... 197

12-4-4-2 درنظرگرفتن وضعیت کنترل برترافیک................................................. 198

12-4-4-3 در نظر گرفتن احتمالی ظرفیت مراکز امدادشده رسانی......................... 199

12-4-4-4 درنظردرنظرگرفت احتمالی ظرفیت مراکز امداد رسانی........................ 199

12-4-4-5 مبداء و مقصدها مجازی...................................................................... 199

12-4-4-6 استفاده از تابع ارزش زمان.................................................................... 199

12-5 ارزیابی شبکه ................................................................................................ 200

12-5-1 ارزیابی کل شبکه ..................................................................................... 202

12-5-2 ارزیابی اجزاء شبکه .................................................................................. 204

12-5-2-1 تحلیل حساسیت................................................................................... 204

13 بکارگیری مدل .................................................................................................. 202

13-1 شبکه ساده با یک مبداء و مقصد ................................................................... 208

13-1-1 روندانجام تحلیل شبکه ............................................................................ 209

13-2 شبکه متشکل از چند مبداء‌و مقصد................................................................ 212

13-2-1 نتایج تحلیل ............................................................................................. 214

14- پیشنهادات برای کارهای آینده......................................................................... 219


لیست اشکال

عنوان صفحه

شکل 2-1 تابع کارآیی زمان ....................................................................................... 14

شکل 2-2 .................................................................................................................. 21

شکل 2-3 تابع عملکرد منطقی a) حداقل معبرها b) کوتاهترین مسیر....................... 21

شکل 2-4 قابلیت اطمینان بهینه شبکه حمل و نقل باتوجه به منابع دردسترس............ 23

شکل2-5 حداکثرجریان ترافیک درشبکه حمل ونقل برحسب منابع‌ دردسترس.......... 23

شکل2-6 رابطه بین معیارهای کارایی T,D,Q نسبت به مقادیر قبل از زلزله برای قبل مختلف نرخ

خرابیl ..................................................................................................................... 26

شکل 2-7 همبستگی بین Q و D (5000 نمونه نسبت به مقادیر از زلزله سنجیده شده‌اند) 26

شکل 2-8 فاصلة نسبی جمعیت ساکن منطقه ازمراکز امدادی.................................. 28

شکل 2-9 رابطه بین درصد جمعیت آسیب‌ دیده وشدت زلزله................................... 39

شکل 2-10 رابطة بین تعداد تخت کمپ بیمارستانی و فاصلة حمل‌مجروح................ 41

شکل 6-1 فلوچارت برآورد خرابی برای ساختمانهای مسکونی................................. 87

شکل 6-2 نسبت خسارت وارده به ساختمانهای مسکونی درزلزله منجیل.................. 88

شکل 6-3 تابع‌آسیب‌پذیری ساختمانهای مسکونی به کاررفته در مطالعه JICA........ 88

شکل6-4 میانگین ضریب خرابی برحسب نمره‌سازه‌ای برای سازه‌PCI وO.22 = PGA 90

شکل 6-5 نسبت تلفات زلزله در ایران ...................................................................... 94

شکل 6-6 نسبت تعداد تلفات زلزله روزهنگام به شب هنگام..................................... 94

شکل 6-7 اعتبار سنجیی تلفات برآوردشده کوبرن واسپنس........................................ 95

شکل 6-8 توزیع تلفات انسانی درشب بدون نیروهای نجات (مدل گسل ری)......... 91

شکل 8-1 توابع خرابی برای حالتهای مختلف خرابی راههای شهری..................... 124

شکل 8-2توابع آسیب‌پذیر برای حالتهای مختلف خرابی اجراشده به روش حفاری و خاکبردای125

شکل 8-3 احتمال خرابی برای پلهای فولادی.......................................................... 128

شکل 8-4 احتمال خرابی برای پلهای بتنی.............................................................. 128

شکل 8-5 احتمال خرابی برای پل نوع 1 ث اب برای شتابg 8/0=PGA............. 129

شکل 8-6 احتمال خرابی برای پل نوع 3 ث اب برای شتابg 8/0=PGA............. 130

شکل8-7 احتمال خرابی برای پل نوع 6ث اب برای شتابg 8/0 = PGA ............ 130

شکل 8-8 نمودار خرابی ساختمان بیمارستانها......................................................... 138

شکل 9-1 تفاوت بین توابع مختلف جاذبه............................................................... 148

شکل 9-2 مقایسه مابین روش جاذبه، فرصت بینابینی و فرصت بینابینی رقابتی....... 156

شکل 10-1 توزیع هزینه‌هایی که‌درهر اتصال رانندگان آن رادرک می‌کنند............... 167

شکل11-1 رابطه بین X و F(x) و G(x) ............................................................. 172

شکل 11-2 مثال روش نمونه سازی آغازین بدون جایگزین................................... 174

شکل 11-3 مقایسه بین ث بپ و مونت کارلو......................................................... 175

شکل 11-4 ............................................................................................................ 179

شکل 12-1 روندکلی ارزیابی شبکه حمل و نقل بعد از بروز زلزله.......................... 184

شکله 12-2 روند برآورد تقاضا (سفرهای امدادی) بعداز بروززلزله......................... 185

شکل12-3 روند برآورد عرضه مراکز امدادی.......................................................... 189

شکل12-4 تابع آسیب پذیری تول 99 Hazus ..................................................... 191

شکله 12-5 روند برآورد شبکه حمل و نقل ........................................................... 192

شکل 12-6 وضعیتهای مختلف کنترل ترافیک........................................................ 198

شکل12-7 روند توزیع و تخصیص درشبکة حمل و نقل بعد از بروززلزله.............. 200

شکل 12-8 روند ارزیابی شبکة حمل و نقل بعد از بروز زلزله............................... 201

شکل 13-1 احتمال خرابی برای پل نوعHBRI برای شتاب g 8/0 = PGA ........ 207

شکل 13-2 شبکه ساده با یک مبداء و مقصد........................................................... 208

شکل 13-2 نمودار تورنادو، تحلیل حساسیت برای متوسط زمان حمل مجروح برای شدت زلزله g 60 به روش نمونه سازی مونت کارلو................................................................................................... 212

شکل 13-5 شبکه متشکل مونت کارلو.................................................................... 212

شکل 13-6 نمودار تورنادو، تحلیل حساسیت برای متوسط خرابی کل شبکه برای شدت زلزله g 2/0 با نمونه سازی LHS ..................................................................................................................... 215

شکل 13-7 نمودار تورنادو، تحلیل حساسیت برای متوسط خرابی کل شبکه برای شدت زلزله g و 4/0 با نمودارLHS ................................................................................................................................ 216

شکل 13-8 نمودار تورنادو، تحلیل حساسیت برای متوسط خرابی کل شبکه برای شدت g 6/0 با نمونه سازی LHS ................................................................................................................................ 211

تصویر الف-1 خرابی دربزرگراه هانشین کوبه ژاپن 1995....................................... 221

تصویر الف-2 آتش سوزی بعد از زلزله درشهر کوبن ژاپن1995............................ 222

تصویرالف-3 ترافیک بعد از زلزله درشهرکوبه ژاپن1995....................................... 222

تصویرالف-4 واژگونی پل در بزرگراه هانشین شهرکوبه ژاپن1995......................... 223

تصویرالف-5 خرابی دربزگراه هانشین شهر کوبه ژاپن1995................................... 223

تصویرالف-6 خرابی پایه پل بزرگراه هانشین، کوبه ژاپن1995................................ 224

تصویرالف-7 خرابی پل نیشینومیاکو با دهانه 252 متری کوبه ژاپن 1995............... 224

تصویرالف-8 خرابی خط آهن وانسدا دراههای جانبی، کوبه ژاپن........................... 225

تصویر الف-9 خرابی پل گاویون کانیون نورث ریج، کالیفرنیا آمریکا1994............. 225

تصویرالف-10 استفاده ازژاکت فولادی نورث ریج آمریکا1994.............................. 226

تصویرالف-11 انفجار خط لوله گاز و تاثیر آن برراه مجاور، نورث ریج‌1994......... 226

تصویر الف-12 خرابی درآزاد راه نیمیتز، اکلندا، زلزله لوما پریتا آمریکا 1989......... 22

تصویرالف-13 پل خلیج اکلند، لوما پریتا آمریکا 1989............................................ 227

تصویرالف-14ماشین آتش‌نشانی درترافیک شهرلنینکان، ارمنستان 1988................ 228

تصویرالف-15 تخریب بدنه راه براثر روانگرائی، کاستاریکا..................................... 1991

تصویرالف-16 تخریب شدید بدنه راه براثر روانگرایی، کاستاریکا........................... 1991

تصویرالف-17 واژگونی تریلی درجاده، کاستاریکا1991.......................................... 229

تصویرالف-18 تخریب بیمارستان، مکزیکو سیتی مکزیک1995.............................. 230

تصویرالف-19 خرابی پل کارمن، فیلیپین 1990...................................................... 230

تصویرالف-20 روانگرای درمرکز شهرداگویان،فیلیپین1990.................................... 231

تصویرالف-21 بیمارستان رستم آباد، منجیل ایران1990........................................... 231

تصویرالف-22 تخریب پل قدیمی، منجیل ایران1990............................................. 232

تصویرالف-23 تخریب بزرگراه اروپایی، ازمیت ترکیه1999.................................... 232


لیست جداول

عنوان صفحه

جدول2-1- مثالی از ضرایب تاخیر(برای پیاده روی).................................................. 49

جدول6-1 نمره مقدماتی خطرسازه BSH برمبنای ATC –21................................ 91

جدول شماره6-2 نمادهای ضرایب اصلاح کارآئی ساختمان....................................... 91

جدول6-3 نسبت تلفات درزلزله‌های ایران................................................................. 93

جدول8-1 طبقه بندی تقاطعات درتحلیل لرزه شبکه............................................... 118

جدول 8-2 معیارهای کارایی شبکة حمل و نقل درشرایط عادی............................. 120

جدول8-3 مقادیر میانه وضریب توزیع نرمال لگاریتمی برای راههای شهری.......... 123

جدول8-4 پارامترهای توابع خرابی تونل HAZUS99 ......................................... 125

جدول8-5 خلاصه خرابی های ثبت شده در زلزله کوبه 1995................................ 127

جدول 8-6 ضرایب منحنیهای خرابی...................................................................... 128

جدول8-7 احتمال خرابی کامل و کوتاه مدت بیماستان برحسب درصد................... 135

جدول8-8 احتمال وقفه درخدمات بیمارستان.......................................................... 136

جدول10-1 نمایی از طبقه‌بندی روشهای تخصیصی ترافیک................................... 160

جدول10-2 ضرایب اصلاح شدهBPR و 356 NCHRP و 1988 ...................... 164

جدول13-1 درصد احتمال وقوع وضعیت خرابی برای سه نوع پل انتخابی............. 207

جدول13-2 مشخصات شبکه ساده با یک مبداء و مقصد......................................... 209

جدول13-3 مقایسه بین نتایج روشهای مختلف نمونه سازی و مقدارتئوری........... 210

جدول13-4 مقادیرآماری تحلیل معیارهای کارایی شبکه ساده (روش‌مونت‌کارل).... 211

جدول13-5 مشخصات شبکه متشکل از دو مبداء و مقصد...................................... 213

جدول13-6 مشخصات آماری معیاری ارزیابی شبکه برای سناریوهای مختلف (به روش LHS) 214

روشهای موجود برای بررسی شبکه حمل و نقل بعد از بروز زلزله


بروز زلزله های شدید بخصوص در شهرهای بزرگ می تواند آسیبهای انسانی گسترده‌ای را بهمراه آورد. شکبه حمل و نقل برای نجات جان و مجروحین زلزله را ارائه سریع و خدمات درمانی به آنان ، نقش اساسی دراد. لذا از شبکه حمل و نقل بعنوان شریان حیاتی نامرده می‌شود. برای کاهش آسیبهای انسانی احتمالی زلزله در هر شهر یا منطقه‌ای نیازمند به ارزیابی عملکرد شبکه حمل و نقل در پاسخگویی به تقاضا، برای سفرها ی امدادی بعد از زلزله می باشیم تا بتوایم ضمن کسب آمادگی لازم برای مقابله با بحران، اولویت بندی اجزاء شبکه را از نظر بازسازی تعیین نماییم.

در این سمینار به ارزیابی عملکرد شبکه حمل و نقل برای انجام سفره های امدادی بعد از بروز زلزله با توجه به عرضه و تقاضا پرداخته شده است روش ارائه شده دارای پنج مرحله است.

ابتدا سناریو های مختلف زلزله تعین می گردد. سپس میزان آسیبهای احتمالی شبکه حمل و نقل و وضعیت مراکز امدادی (عرضه) و تعداد مجروحین (تقاضا) شبیه سازی می گردد. برای اینکار از نمونه سازی مونت کارلو و LHS و توابع خرابی اجزاء آسیب‌ دیده شبکه بدست می آید در مرحله بعدی توزیع و تخصیص سفرها انجام می‌شود و سرانجام معیارهای ارزیابی شبکه، مانند زمان سفر برای هر سناریو برآورد می گردد. در این سمینار شبکه های مختلفی مورد تحلیل قرار گرفته است. به کمک این روش می توان ضمن ارزیابی شبکه حمل و نقل بعد از زلزله، به برآوردی از وضعیت بحران بعد از زلزله دست یافت. همچنین مسیرها را اولیت بندی نموده و برای توسعه یا ایجاد دست یافت. همچنین مسیرها را اولیت بندی نوده و برای توسعه یا ایجاد راههای جدید تصمیم گیری کرد. مراکز امدادی موجود را از نظر انجام تقویت اولیت بندی کرده و یا مراکز امدادی جدید را امکان یابی کرد، برای اولیت بندی کرده و یا مراکز امدادی جدید را مکان یابی کرد. برای مدیریت بحران و کنترل ترافیک پیش‌‌بینیها لازم انجام داده و تاثیر آنها را در عملکرد اجزاء شبکه حمل و نقل محاسبه کرد. این روش جدای از زلزله می تواند در مورد دیگری که شبکه حمل و نقل اعم ا شهری یا منطقه ای در معرض آسیب و کاهش ظرفیتهای احتمالی قرای می گیرد. مانند بارش باران یا برف سنگین و بروز تصادفات یا بمبارانهای هوائی مورد استفاده قرار گیرد.

فهرست

عنوان صفحه

1-1 مقدار................................................................................................................... 2

1-2 اهداف و دست آوردهای پروژه‌........................................................................... 5

2 بررسی کارهای انجام شده تاکنون............................................................................ 8

2-1 عملکرد اجزای شبکه بصورت مستقل................................................................. 9

2-1-1 عملکرد فیزیکی و آسیب پذیری..................................................................... 10

2-1-2 کارآیی............................................................................................................ 11

2-2-1 ازائة معیارهای کارایی..................................................................................... 11

2-2-2 بررسی تأخیرهای وارد از خرابی.................................................................... 17

2-2-3 اولیت دهی پلها برای بازسازی........................................................................ 20

2-3عملکرد کلی شبکة حمل و نقل............................................................................ 23

2-3-1 بررسی معیارهای کارایی شکبة تخریب شده................................................... 24

2-3-3 برآوردتأخیرهای وارده از خرابی..................................................................... 35

2-3-4 ارزیابی سیستم بیمارستانی منطقه‌ای............................................................... 38

2-3-5 ارزیابی ریسک منطقه‌ای................................................................................. 42

2-3-6زمان جمع شدن افراد امداد رسان..................................................................... 47

2-4سفرهای ترافیکی بعد از زلزله.............................................................................. 50

2-4-1-رابطة بین حجم سفرها و بازسازی بعد از زلزله............................................. 50

4-1 عملکرد شبکه‌های حمل و نقل ایران در زلزله‌های گذشته................................... 54

4-2 عملکرد شبکه های ح0مل و نقل دنیا در زلزله های اخیر.................................... 55

4-2-1زلزله کوبه ژاپن 1995...................................................................................... 56

4-2-1-1 پلها و راههای اصلی کوبه........................................................................... 57

4-2-1-2 راه آهن کوبه.............................................................................................. 59

4-2-1-3 سیستم متروی کوبه.................................................................................... 60

4-2-1-4 فرودگاههای اطراف کوبه............................................................................ 60

4-2-2 لزله نورث ریج. کالیفرنیا آمریکا 1994........................................................... 60

4-2-3 زلزله لوما پریتا، آمریکا 1989......................................................................... 61

4-2-4 زلزله ارمنستان 1988...................................................................................... 62

4-2-5 زلزله کاستاریا 1991....................................................................................... 63

4-2-6 زلزله مکزیکوسیتی، مکزیک 1995................................................................. 63

4-2-7 زلزله فیلیپین 1990......................................................................................... 63

4-2-8 زلزله ازمیت ترکیه 1999................................................................................ 63

5ستاریوی زلزله.......................................................................................................... 68

5-1کارهای انجام شده دردنیا در زمینه طراحی برمبنای سناریوی زلزله...................... 69

5-2پارامترهای موثر در تعریف سناریو....................................................................... 69

5-2-1 زلزله............................................................................................................... 70

5-2-2 مقیاس اندازه گیری زلزله............................................................................... 72

5-2-3 آنالیز زلزله ..................................................................................................... 72

5-2-4 پهنه بندی لرزه ای.......................................................................................... 72

5-2-5 روش‌ پهنه بندی حرکات زمین تحت اثر زلزله............................................... 73

5-2-5-1 لرزه خیزی................................................................................................. 73

5-2-5-2 کاهش شدت حرکات زمین در اثر دورشدن از مرکز زلزله......................... 73

5-2-5-3اثرات وضعیت محل برروی حرکات زمین لرزه.......................................... 74

5-2-6بررسی اثرات وضعیت محل برای پهنه بندی با دقت کم.................................. 74

5-2-7بررسی اثرات وضعتی محل برای پهنه‌بندی با دقت کم.................................... 74

5-2-8 بررسی اثرات وضعیت محل برای پهنه‌بندی با دقت زیاد................................ 75

5-2-9کارهای انجام شده در دنیا درزمینه پهنه‌‌بندی لرزه........................................... 76

6 تقاضا....................................................................................................................... 79

6-1 سفرهای خدماتی................................................................................................ 80

6-2 سفرهای امدادی.................................................................................................. 82

6-3 برآورد مجروحین................................................................................................ 84

6-3-1 ناحیه بندی ساختمانها.................................................................................... 85

6-3-2 طبقه بندی ساختمانها..................................................................................... 86

6-3-3 برآورد آسیبهای وارده به ساختمانها................................................................ 86

6-3-4 نسبت تلفات انسانی....................................................................................... 91

6-3-4-1 اعتبار سنجی تلفات برای شهرتهران........................................................... 95

6-3-4-2 برآورد تلفات برای شهرتهران................................................................... 96

7 بررسی رفتارهای انسانی.......................................................................................... 99

7-1 رفتار رانندگان در هنگام وقوع زلزله.................................................................. 100

7-1-1 عوامل موثر در وضعیت رفتار رانندگان....................................................... 100

7-1-2 مشکلات احتمالی ناشی از رفتار رانندگان وعوامل تشدید کنندة‌آن.............. 102

7-1-2-1اشغال سطح خیابانها................................................................................. 102

7-1-2-4 بروز تصادفات احتمالی........................................................................... 103

7-1-2-5 وسایل نقلیه رها شده.............................................................................. 104

7-1-2-6 هراس ناشی از زلزله و عواقب آن........................................................... 104

7-1-2-7 افزایش طول سفرها دراثر عدم اطلاع...................................................... 104

7-1-3 راههای مواجهه با این مشکلات.................................................................. 104

7-1-3-1 آموزش و اطلاع رسانی........................................................................... 105

7-1-3-2 تخلیه و بازگشایی مسیر.......................................................................... 105

7-2 رفتار رانندگان در استفاده از شبکه بعد از زلزله................................................ 106

7-3 رفتار نیروهای امنیتی و امدادی ....................................................................... 107

7-4 رفتار نیروهای مدیریت امدادی و انتظامی........................................................ 111

8 برآورد عرضه........................................................................................................ 115

8-1 برآورد شبکة حمل و نقل بعد از زلزله............................................................. 115

8-1-1 اجزاء شبکه.................................................................................................. 115

8-1-1-1 راهها ...................................................................................................... 115

8-1-1-2 تقاطعات ............................................................................................... 117

8-1-1-3 پلها ........................................................................................................ 119

8-1-2 پارامترهای ارزیابی شبکه............................................................................. 120

8-1-3 خرابی‌های مستقیم شبکه‌حمل و نقل بعد از زلزله....................................... 121

8-1-3-1 خرابی بدنة راه ....................................................................................... 122

8-1-3-2 تونل ...................................................................................................... 124

8-1-3-3 خرابی پل............................................................................................... 125

8-1-3-4 منحنیهای شکنندگی یا خرابی پلها.......................................................... 126

8-1-4 خرابی های غیر مستقیم شبکه حمل و نقل بعداززلزله................................ 130

8-1-4-1 خرابی تأسیسات جانبی مسیر................................................................. 131

8-1-4-2 عوامل ترافیکی....................................................................................... 131

8-2 برآورد مراکز امداد رسانی................................................................................ 132

8-2-1 پارامترهای مهم برای ارزیابی مراکز امدادی................................................. 133

8-2-2 ظرفیت پذیرش مجروح.............................................................................. 134

8-2-3 عملکرد بیمارستان بعد از زلزله.................................................................... 135

8-2-4 خرابی بیمارستانها........................................................................................ 136

9 توزیع................................................................................................................... 140

9-1 شبیه سازی...................................................................................................... 140

9-1-1 روشهای ضریب رشد.................................................................................. 142

9-1-2 ضریب رشد بکنواخت................................................................................. 143

9-1-3 روش میانگین ضریب رشد ........................................................................ 143

9-1-4 مدل فراتر ................................................................................................... 144

9-1-5 مدل دیترویت ............................................................................................. 145

9-1-6 ضرایب رشد با محدودیت دوگانه (روش فورنیس)..................................... 145

9-1-7 مزایا و معایب ضریب رشد.......................................................................... 146

9-1-8 مدل جاذبه .................................................................................................. 147

9-1-9 محدودیتهای مدل جاذبه ............................................................................. 149

9-1-10 مدل فرصت بینابینی ................................................................................. 150

9-2 توزیع به کک مدلهای برنامه ریزی خطی......................................................... 152

9-3 مقایسة بین مدلهای توزیع ............................................................................... 155

10 مدلهای تخصیص .............................................................................................. 159

10-1 تخصیص به روش هیچ یاهمه (کوتاهترین مسیر).......................................... 160

10-1-1 الگوریتم کوتاهترین مسیر.......................................................................... 161

10-2 تخصیص تعادل ی (ظرفیت محدود)............................................................. 162

10-2-1 روند تخصیص افزایشی............................................................................ 164

10-2-2 روند با سرعت تغییرات زیاد و کم............................................................ 165

10-3-3 روند میانگین متوالی ................................................................................ 165

10-3 تخصیص احتمالاتی ...................................................................................... 166

10-3-1 تخصیص احتمالاتی برمبنای شبیه‌سازی.................................................... 166

10-3-2 تخصیص احتالاتی نسبی .......................................................................... 168

10-4 روش برنامه ریزی خطی .............................................................................. 168

10-5 روشMcLaughiln .................................................................................. 169

11 تحلیل ریسک ................................................................................................... 171

11-1 شبیه سازی مونت کارلو................................................................................. 171

11-1-1 مزایای نمونه سازی مونت کارلو............................................................... 173

11-2 نمونه سازیLatin Hyper cube یا LHS ............................................... 173

11-3 مقایسه بین نمونه سازیLHS و مونت کارلو................................................ 175

11-4 توابع توزیع برای شبیه سازی......................................................................... 176

11-4-1 توابع توزیع............................................................................................... 177

11-5- دقت برآوردهای احتمالاتی.......................................................................... 177

12 ارائه مدل ........................................................................................................... 182

12-1 سناریوی زلزله .............................................................................................. 182

12-2 برآورد تقاضا ................................................................................................. 184

12-3 برآورد عرضه ................................................................................................ 188

12-3-1 برآورد شبکه حمل ونقل........................................................................... 189

12-3-2-1 @ Risk ............................................................................................ 192

12-4-1 الگوریتم کوتاهترین مسیر ........................................................................ 194

12-4-2 برنامه ریزی خطی ................................................................................... 195

12-4-3 نرم افزار مدل ........................................................................................... 196

12-4-4 قابلیت توسعه ........................................................................................... 197

12-4-4-1 درنظر گرفتن ترافیک غیرامدادی رسانی............................................... 197

12-4-4-2 درنظرگرفتن وضعیت کنترل برترافیک................................................. 198

12-4-4-3 در نظر گرفتن احتمالی ظرفیت مراکز امدادشده رسانی......................... 199

12-4-4-4 درنظردرنظرگرفت احتمالی ظرفیت مراکز امداد رسانی........................ 199

12-4-4-5 مبداء و مقصدها مجازی...................................................................... 199

12-4-4-6 استفاده از تابع ارزش زمان.................................................................... 199

12-5 ارزیابی شبکه ................................................................................................ 200

12-5-1 ارزیابی کل شبکه ..................................................................................... 202

12-5-2 ارزیابی اجزاء شبکه .................................................................................. 204

12-5-2-1 تحلیل حساسیت................................................................................... 204

13 بکارگیری مدل .................................................................................................. 202

13-1 شبکه ساده با یک مبداء و مقصد ................................................................... 208

13-1-1 روندانجام تحلیل شبکه ............................................................................ 209

13-2 شبکه متشکل از چند مبداء‌و مقصد................................................................ 212

13-2-1 نتایج تحلیل ............................................................................................. 214

14- پیشنهادات برای کارهای آینده......................................................................... 219


لیست اشکال

عنوان صفحه

شکل 2-1 تابع کارآیی زمان ....................................................................................... 14

شکل 2-2 .................................................................................................................. 21

شکل 2-3 تابع عملکرد منطقی a) حداقل معبرها b) کوتاهترین مسیر....................... 21

شکل 2-4 قابلیت اطمینان بهینه شبکه حمل و نقل باتوجه به منابع دردسترس............ 23

شکل2-5 حداکثرجریان ترافیک درشبکه حمل ونقل برحسب منابع‌ دردسترس.......... 23

شکل2-6 رابطه بین معیارهای کارایی T,D,Q نسبت به مقادیر قبل از زلزله برای قبل مختلف نرخ

خرابیl ..................................................................................................................... 26

شکل 2-7 همبستگی بین Q و D (5000 نمونه نسبت به مقادیر از زلزله سنجیده شده‌اند) 26

شکل 2-8 فاصلة نسبی جمعیت ساکن منطقه ازمراکز امدادی.................................. 28

شکل 2-9 رابطه بین درصد جمعیت آسیب‌ دیده وشدت زلزله................................... 39

شکل 2-10 رابطة بین تعداد تخت کمپ بیمارستانی و فاصلة حمل‌مجروح................ 41

شکل 6-1 فلوچارت برآورد خرابی برای ساختمانهای مسکونی................................. 87

شکل 6-2 نسبت خسارت وارده به ساختمانهای مسکونی درزلزله منجیل.................. 88

شکل 6-3 تابع‌آسیب‌پذیری ساختمانهای مسکونی به کاررفته در مطالعه JICA........ 88

شکل6-4 میانگین ضریب خرابی برحسب نمره‌سازه‌ای برای سازه‌PCI وO.22 = PGA 90

شکل 6-5 نسبت تلفات زلزله در ایران ...................................................................... 94

شکل 6-6 نسبت تعداد تلفات زلزله روزهنگام به شب هنگام..................................... 94

شکل 6-7 اعتبار سنجیی تلفات برآوردشده کوبرن واسپنس........................................ 95

شکل 6-8 توزیع تلفات انسانی درشب بدون نیروهای نجات (مدل گسل ری)......... 91

شکل 8-1 توابع خرابی برای حالتهای مختلف خرابی راههای شهری..................... 124

شکل 8-2توابع آسیب‌پذیر برای حالتهای مختلف خرابی اجراشده به روش حفاری و خاکبردای125

شکل 8-3 احتمال خرابی برای پلهای فولادی.......................................................... 128

شکل 8-4 احتمال خرابی برای پلهای بتنی.............................................................. 128

شکل 8-5 احتمال خرابی برای پل نوع 1 ث اب برای شتابg 8/0=PGA............. 129

شکل 8-6 احتمال خرابی برای پل نوع 3 ث اب برای شتابg 8/0=PGA............. 130

شکل8-7 احتمال خرابی برای پل نوع 6ث اب برای شتابg 8/0 = PGA ............ 130

شکل 8-8 نمودار خرابی ساختمان بیمارستانها......................................................... 138

شکل 9-1 تفاوت بین توابع مختلف جاذبه............................................................... 148

شکل 9-2 مقایسه مابین روش جاذبه، فرصت بینابینی و فرصت بینابینی رقابتی....... 156

شکل 10-1 توزیع هزینه‌هایی که‌درهر اتصال رانندگان آن رادرک می‌کنند............... 167

شکل11-1 رابطه بین X و F(x) و G(x) ............................................................. 172

شکل 11-2 مثال روش نمونه سازی آغازین بدون جایگزین................................... 174

شکل 11-3 مقایسه بین ث بپ و مونت کارلو......................................................... 175

شکل 11-4 ............................................................................................................ 179

شکل 12-1 روندکلی ارزیابی شبکه حمل و نقل بعد از بروز زلزله.......................... 184

شکله 12-2 روند برآورد تقاضا (سفرهای امدادی) بعداز بروززلزله......................... 185

شکل12-3 روند برآورد عرضه مراکز امدادی.......................................................... 189

شکل12-4 تابع آسیب پذیری تول 99 Hazus ..................................................... 191

شکله 12-5 روند برآورد شبکه حمل و نقل ........................................................... 192

شکل 12-6 وضعیتهای مختلف کنترل ترافیک........................................................ 198

شکل12-7 روند توزیع و تخصیص درشبکة حمل و نقل بعد از بروززلزله.............. 200

شکل 12-8 روند ارزیابی شبکة حمل و نقل بعد از بروز زلزله............................... 201

شکل 13-1 احتمال خرابی برای پل نوعHBRI برای شتاب g 8/0 = PGA ........ 207

شکل 13-2 شبکه ساده با یک مبداء و مقصد........................................................... 208

شکل 13-2 نمودار تورنادو، تحلیل حساسیت برای متوسط زمان حمل مجروح برای شدت زلزله g 60 به روش نمونه سازی مونت کارلو................................................................................................... 212

شکل 13-5 شبکه متشکل مونت کارلو.................................................................... 212

شکل 13-6 نمودار تورنادو، تحلیل حساسیت برای متوسط خرابی کل شبکه برای شدت زلزله g 2/0 با نمونه سازی LHS ..................................................................................................................... 215

شکل 13-7 نمودار تورنادو، تحلیل حساسیت برای متوسط خرابی کل شبکه برای شدت زلزله g و 4/0 با نمودارLHS ................................................................................................................................ 216

شکل 13-8 نمودار تورنادو، تحلیل حساسیت برای متوسط خرابی کل شبکه برای شدت g 6/0 با نمونه سازی LHS ................................................................................................................................ 211

تصویر الف-1 خرابی دربزرگراه هانشین کوبه ژاپن 1995....................................... 221

تصویر الف-2 آتش سوزی بعد از زلزله درشهر کوبن ژاپن1995............................ 222

تصویرالف-3 ترافیک بعد از زلزله درشهرکوبه ژاپن1995....................................... 222

تصویرالف-4 واژگونی پل در بزرگراه هانشین شهرکوبه ژاپن1995......................... 223

تصویرالف-5 خرابی دربزگراه هانشین شهر کوبه ژاپن1995................................... 223

تصویرالف-6 خرابی پایه پل بزرگراه هانشین، کوبه ژاپن1995................................ 224

تصویرالف-7 خرابی پل نیشینومیاکو با دهانه 252 متری کوبه ژاپن 1995............... 224

تصویرالف-8 خرابی خط آهن وانسدا دراههای جانبی، کوبه ژاپن........................... 225

تصویر الف-9 خرابی پل گاویون کانیون نورث ریج، کالیفرنیا آمریکا1994............. 225

تصویرالف-10 استفاده ازژاکت فولادی نورث ریج آمریکا1994.............................. 226

تصویرالف-11 انفجار خط لوله گاز و تاثیر آن برراه مجاور، نورث ریج‌1994......... 226

تصویر الف-12 خرابی درآزاد راه نیمیتز، اکلندا، زلزله لوما پریتا آمریکا 1989......... 22

تصویرالف-13 پل خلیج اکلند، لوما پریتا آمریکا 1989............................................ 227

تصویرالف-14ماشین آتش‌نشانی درترافیک شهرلنینکان، ارمنستان 1988................ 228

تصویرالف-15 تخریب بدنه راه براثر روانگرائی، کاستاریکا..................................... 1991

تصویرالف-16 تخریب شدید بدنه راه براثر روانگرایی، کاستاریکا........................... 1991

تصویرالف-17 واژگونی تریلی درجاده، کاستاریکا1991.......................................... 229

تصویرالف-18 تخریب بیمارستان، مکزیکو سیتی مکزیک1995.............................. 230

تصویرالف-19 خرابی پل کارمن، فیلیپین 1990...................................................... 230

تصویرالف-20 روانگرای درمرکز شهرداگویان،فیلیپین1990.................................... 231

تصویرالف-21 بیمارستان رستم آباد، منجیل ایران1990........................................... 231

تصویرالف-22 تخریب پل قدیمی، منجیل ایران1990............................................. 232

تصویرالف-23 تخریب بزرگراه اروپایی، ازمیت ترکیه1999.................................... 232


لیست جداول

عنوان صفحه

جدول2-1- مثالی از ضرایب تاخیر(برای پیاده روی).................................................. 49

جدول6-1 نمره مقدماتی خطرسازه BSH برمبنای ATC –21................................ 91

جدول شماره6-2 نمادهای ضرایب اصلاح کارآئی ساختمان....................................... 91

جدول6-3 نسبت تلفات درزلزله‌های ایران................................................................. 93

جدول8-1 طبقه بندی تقاطعات درتحلیل لرزه شبکه............................................... 118

جدول 8-2 معیارهای کارایی شبکة حمل و نقل درشرایط عادی............................. 120

جدول8-3 مقادیر میانه وضریب توزیع نرمال لگاریتمی برای راههای شهری.......... 123

جدول8-4 پارامترهای توابع خرابی تونل HAZUS99 ......................................... 125

جدول8-5 خلاصه خرابی های ثبت شده در زلزله کوبه 1995................................ 127

جدول 8-6 ضرایب منحنیهای خرابی...................................................................... 128

جدول8-7 احتمال خرابی کامل و کوتاه مدت بیماستان برحسب درصد................... 135

جدول8-8 احتمال وقفه درخدمات بیمارستان.......................................................... 136

جدول10-1 نمایی از طبقه‌بندی روشهای تخصیصی ترافیک................................... 160

جدول10-2 ضرایب اصلاح شدهBPR و 356 NCHRP و 1988 ...................... 164

جدول13-1 درصد احتمال وقوع وضعیت خرابی برای سه نوع پل انتخابی............. 207

جدول13-2 مشخصات شبکه ساده با یک مبداء و مقصد......................................... 209

جدول13-3 مقایسه بین نتایج روشهای مختلف نمونه سازی و مقدارتئوری........... 210

جدول13-4 مقادیرآماری تحلیل معیارهای کارایی شبکه ساده (روش‌مونت‌کارل).... 211

جدول13-5 مشخصات شبکه متشکل از دو مبداء و مقصد...................................... 213

جدول13-6 مشخصات آماری معیاری ارزیابی شبکه برای سناریوهای مختلف (به روش LHS) 214


دانلود فایل پرتکل های مسیریابی و درجه مشارکت نودها در مسیریابی

امروزه تمایل به استفاده از شبکه های بی سیم روز به روز در حال افزایش است ،‌ چون هر شخصی،‌ هر جایی و در هر زمانی می تواند از آنها استفاده نماید در سالهای اخیر رشد شگرفی در فروش کامپیوترهای laptop و کامپیوترهای قابل حمل بوجود آمده است
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 122 کیلو بایت
تعداد صفحات فایل 81
پرتکل های مسیریابی و درجه مشارکت نودها در مسیریابی

فروشنده فایل

کد کاربری 1024

پرتکل های مسیریابی و درجه مشارکت نودها در مسیریابی

امروزه تمایل به استفاده از شبکه های بی سیم روز به روز در حال افزایش است ،‌ چون هر شخصی،‌ هر جایی و در هر زمانی می تواند از آنها استفاده نماید . در سالهای اخیر رشد شگرفی در فروش کامپیوترهای laptop و کامپیوترهای قابل حمل بوجود آمده است . این کامپیوترهای کوچک،‌به چندین گیگا بایت حافظه روی دیسک ،‌ نمایش رنگی با کیفیت بالا و کارتهای شبکه بی سیم مجهز هستند . علاوه بر این ،‌ این کامپیوترهای کوچک می توانند چندین ساعت فقط با نیروی باتری کار کنند و کاربران آزادند براحتی آنها را به هر طرف که می خواهند منتقل نمایند . زمانی که کاربران شروع به استفاده از کامپیوترهای متحرک نمودند ،‌ به اشتراک گذاشتن اطلاعات بین کامپیوترها یک نیاز طبیعی را بوجود آورد . از جمله کاربردهای به اشتراک گذاری اطلاعات در مکانهایی نظیر سالن کنفرانس ،‌کلاس درس ‌،‌ ترمینالهای فرودگاه و همچنین در محیط های نظامی است .

دوروش برای ارتباط بی سیم بین کامپیوترهای متحرک وجود دارد .

1- استفاده از یک زیر ساخت ثابت که توسط یک Acces point خارج شد آنگاه در محدوده رادیویی Wireless Access point ها فراهم می آید . که در این گونه شبکه ها ،‌ نودهای متحرک از طریق Access Point ها با یکدیگر ارتباط برقرار می کنند و هنگامیکه یک نود از محدوده رادیویی Access Pointدیگری قرار می گیرد . مشکل اصلی در اینجا هنگامی است که یک اتصال باید از یک Access Point به Access Point دیگری تحویل داده شود ،‌ بدون آنکه تاخیر قابل توجهی به وجود آید ویا بسته ای گم شود .

2- شکل دادن یک شبکه بی سیم Adhoc در بین کاربرانی است که می خواهند با هم ارتباط داشته باشند . این گونه شبکه ها زیر ساخت ثابتی ندارند و کنترل کننده و مرکزی نیز برای آنها وجود ندارد .

شبکه های بی سیم Adhoc از مجموعه ای از نودهای متحرک تشکیل شده اند که این نودها قادرند به طور آزادانه و مداوم مکانشان را در شبکه تغییر دهند . نودهای موجود در شبکه Adhoc همزمان به عنوان client و مسیریاب عمل می کنند و با توجه به عدم وجود ساختار ثابت در این گونه شبکه‎ها ،‌ نودها مسئولیت مسیریابی را برای بسته هایی که می خواهند در شبکه ارسال شوند بر عهده دارند و در انجام این امر با یکدیگر همکاری می کنند .

هدف ما نیز در اینجا بررسی و مطالعه بر روی خصوصیات و ویژگی های این تکنیکهای مسیر یابی است . لازم بذکر است پروتکل های مسیریابی متفاوتی برای استفاده در شبکه های Adhoc پیشنهاد شده اند که پس از مطالعه اجمالی برروی نحوه عملکرد هر یک از آنها ،‌ قادر خواهیم بود آنها را بر طبق خصوصیاتشان قسمت بندی نمائیم .

چرا نیاز به طراحی پروتکلهای مسیر یابی جدیدی برای شبکه های Adhoc وجود دارد ؟‌

در شبکه های سیم دار تغییرات در توپولوژی شبکه بندرت اتفاق می افتد . بیشتر host ها و نودهای دیگر در یک جای مشخصی در شبکه قرار دارند ویک شکستگی در لینک زمانی اتفاق می‎افتد که یک قطع فیزیکی نظیر fail‌ شدن host و یا خسارت فیزیکی کامل اتفاق بیفتد . برای این نوع شبکه های سیم دار با ساختار ثابت یک الگوریتم مسیریابی کلاسیک به خوبی کار می کند.

برای اینکه اطلاعات جداول مسیریابی بروز باشند ،‌مسیریابها به صورت دوره ای اطلاعاتشان را با یکدیگر مبادله می کنند و در حالتی که یک failure‌ ی در لینکی اتفاق بیفتد مسیرها باید مجدداً محاسبه شوند ودر شبکه منتشر گردند. این پروسه یک مدت زمانی طول می کشد که چنین چیزی در شبکه های سیم دار طبیعی است و آشکار است که چنین روشی در شبکه های Adhoc کار نخواهد کرد . در این شبکه ها از آنجایی که نودها مرتباً در حال حرکت هستند ،‌ تغییراتی که در لینکها به وجود می آید نیز بسیار مداوم خواهد بود . به عنوان مثال زمانی را در نظر بگیرید که 2 تا نود در حالی با هم ارتباط برقرار کرده اند که مدام از همدیگر فاصله می گیرند . تا زمانی که هردوی آنها در محدوده ارتباطی همدیگر باشند این ارتباط می تواند حفظ گردد. ولی هنگامیکه فاصله بین نودها بیشتر شود دیگر این ارتباط نیز میسر نخواهد بود . حال تصور کنید که تعداد زیادی از نودها مطابق این سناریو رفتار نمایند ،‌ در این حالت لینکهای زیادی شکل خواهند گرفت ومسیرهای جدیدی به سمت مقصدها محاسبه خواهد شد و در مقابل لینکهای بسیاری نیز شکسته خواهند شد و مسیرهای بسیاری نیز از بین خواهند رفت .

از دیگر مواردی که می توان به عنوان دلایل نیاز به طراحی پروتکلهای مسیریابی جدید برای شبکه‎های Adhoc به آنها اشاره کرد عبارتند از :‌

- پروتکلهای مسیریابی شبکه های سیم دار بار محاسباتی بسیار زیادی را به صورت مصرف زیاد حافظه و همچنین مصرف زیاد انرژی بر روی هر کامپیوتر قرار می دهند .

- پروتکلهای مسیریابی مورد استفاده در شبکه های سیم دار از مشکلات به وجود آوردن حلقه‎های کوتاه مدت وبلند مدت رنج می برند .

- متدهایی که برای حل مشکلات ناشی از بوجود آوردن حلقه ها در پروتکلهای مسیریابی سنتی استفاده می شوند در شبکه های Adhoc عملی نیستند .

این تفاوتها بین شبکه های سیم دار و بی سیم به راحتی آشکار می کند که یک پروتکل مسیریابی برای شبکه های Adhoc باید یکسری از مشکلات اضافه تری را حل نماید که این مشکلات در شبکه های سیم دار وجود نداشته است .

در زیر لیستی از مواردی را که یک پروتکل مسیریابی باید آنها را مدنظر قرار دهد ذکر گردیده که بعضی از این خصوصیات مهمتر از خصوصیات دیگر هستند .

به طور کلی اهداف طراحی پروتکلهای مسیریابی این است که پروتکلی ساخته شود که :‌

1- وقتی که توپولوژی شبکه گسترش می یابد این پروتکل نیز بتواند همچنان مسیریابی را انجام دهد .

2- زمانی که تغییراتی در توپولوژی شبکه به وجود می آید این پروتکل سریعاً قادر به پاسخگویی باشد .

3- مسیرهایی را فراهم کند که بدون حلقه باشد .

4- تاخیر را به حداقل رساند (‌باانتخاب مسیرهای کوتاه )‌

5- برای اجتناب از تراکم چندین مسیر را از مبدأ به مقصد فراهم نماید .

پروتکل طراحی شده برای مسیریابی در یک شبکه Adhoc باید خصوصیات زیررا دارا باشد .

1- اجرای غیر مرکزی داشته باشد ،‌ به این معنی که نباید به یک نود مرکزی وابسته باشد .

2- استفاده از پهنای باند را کار اگرداند (overhead مسیریابی را می نیمم کند )

3- هم از لینکهای یکطرفه و هم از لینکهای دو طرفه استفاده کند .

تقسیم بندی پروتکلهای مسیریابی در شبکه های Adhoc

چندین معیار متفاوت برای طراحی و کلاس بندی پروتکلهای مسیر یابی در شبکه های Adhoc وجود دارد . به عنوان مثال اینکه چه اطلاعات مسیریابی مبادله می شوند ؟ چه زمانی و چگونه این اطلاعات مبادله می‎شوند ؟‌ چه زمانی و چگونه مسیرها محاسبه می شوند .

که ما در این بخش در مورد هر یک از این معیارها مطالبی را بیان خواهیم کرد .

- مسیریابی Link State در مقابل مسیریابی DisTance Vector

همانند شبکه های سیم دار عرف ،‌ LSR و DVR مکانیزم های زیرین برای مسیریابی در شبکه‎های Adhoc بی سیم می باشند . در LSR‌ اطلاعات مسیریابی به شکل بسته های Link State
(Link State Packets) مبادله می شوند . LSP یک نود شامل اطلاعات لینکهای همسایگانش است . هرنود زمانی که تغییری را در لینکی شناسایی کند LSP‌ هایش را فوراً در کل شبکه جاری می کند . نودهای دیگر بر اساس اطلاعاتی که از LSP های دریافتی شان بدست می آورند ‌، توپولوژی کل شبکه را ترسیم می کنند و برای ساختن مسیرهای لازم از یک الگوریتم کوتاهترین مسیر نظیردایجکسترا استفاده می کنند .

لازم به ذکر است تعدادی از هزینه های لینکها از دید یک نود می توانند غیر صحیح باشند واین بدلیل تاخیر زیاد انتشار و قسمت بندی بودن شبکه است . این دیدهای ناسازگار از توپولوژی شبکه می تواند مارا به سمت تشکیل مسیرهایی دارای حلقه سوق دهد . اگرچه این حلقه ها عمرشان کوتاه است وبعد از گذشت مدت زمانی (‌مدت زمانی که طول می کشد تا یک Message‌ قطر شبکه را بپیماید ) ناپدید می شوند . مشکلی که در LSR‌ وجود دارد overhead‌ بالای مسیریابی است که بدلیل حرکت سریع نودها در شبکه و در نتیجه تغییرات سریع در توپولوژی شبکه اتفاق می افتد .

در مکانیزم DVR ،‌ هر نود یک بردار فاصله که شامل شناسه مقصد ،‌ آدرس hop‌ بعدی ،‌ کوتاهترین مسیر. می باشد را برای هر مقصدی نگهداری می کند . هر نود بصورت دوره ای بردارهای فاصله را با همسایگانش مبادله می کند . هنگامیکه نودی بردارهای فاصله را از همسایگانش دریافت می کند ،‌ مسیرهای جدید را محاسبه می کند و بردار فاصله اش را نیز Update‌ می کند و یک مسیر کاملی را از مبدأ تا مقصد شکل می دهد . مشکلی که در مکانیزم DVR وجود دارد همگرایی کند آن وتمایلش به تولید مسیرهای دارای حلقه است .

Event – driven Update در مقابل Periodical Update

برای تضمین اینکه اطلاعات مربوط به موقعیت لینکها و توپولوژی شبکه بروز باشد ،‌ اطلاعات مسیریابی باید در شبکه منتشر شوند . براساس اینکه چه زمانی اطلاعات مسیریابی منتشر خواهند شد قادر خواهیم بود که پروتکلهای مسیریابی را به 2 دسته تقسیم بندی نمائیم . دسته اول پروتکلهایی هستند که به صورت دوره ای اطلاعات مسیریابی را منتشر می کنند و دسته دوم مربوط به پروتکلهایی است که در زمان وقوع تغییری در توپولوژی شبکه اطلاعات مسیریابی را انتشار می‎دهند .

پروتکلهای Periodical Update ،‌ اطلاعات مسیریابی را بصورت دوره ای پخش می کنند . این پروتکلها ،پروتکلهای ساده ای هستند و پایداری شبکه ها را حفظ می کنند و مهم تر از همه این است که به نودهای جدید امکان می دهند که اطلاعات مربوط به توپولوژی و موقعیت لینکها را درشبکه بدست آورند. اگرچه ،در صورتی که مدت زمان بین این بروز رسانی های دوره ای طولانی باشد آنگاه این پروتکلها نمی توانند اطلاعات بروز ر انگه دارند . از طرف دیگر ،‌ در صورتی که این مدت زمان کوتاه باشد ،‌ تعداد بسیار زیادی از بسته های مسیریابی منتشر خواهند شد که در نتیجه پهنای باند زیادی را از یک شبکه بی سیم مصرف خواهد کرد .

در یک پروتکل بروز رسانی Event – Driven‌ ،‌ هنگامیکه یک حادثه ای اتفاق می افتد ،‌ ( نظیر اینکه یک لینک fail‌ می شود و یا اینکه یک لینک جدیدی بوجود می آید )،‌ یک بسته مسیریابی جهت بروزرسانی نمودن اطلاعات مسیریابی موجود در نودهای دیگر ،‌ broadkact‌ می شود . مشکل زمانی بوجود خواهد آمد که توپولوژی شبکه بسیار سریع تغییر کند ، که در آن هنگام تعداد زیادی از بسته های بروز رسانی تولید و در شبکه پخش خواهند شد که این موجب مصرف مقدار زیادی از پهنای باند ونیز تولید نوسانات بسیاری در مسیرها می گردد .

مکانیزم های بروز رسانی دوره ای و بروز رسانی Event Driven‌ می توانند با یکدیگر استفاده شوند و یک مکانیزمی به نام مکانیزم بروز رسانی ترکیبی (‌Hybrid Update ) را به وجود آورند .

- ساختارهای مسطح (Flat ) در مقابل ساختارهای سلسله مراتبی (‌Hierarchical‌)

دریک ساختار مسطح همه نودها در شبکه در یک سطح قرار دارند و دارای عملکرد مسیریابی مشابهی می باشند ،‌ مسیریابی مسطح برای استفاده در شبکه های کوچک ،‌ ساده وکارا است .

در مسیریابی سلسله مراتبی نودها به صورت دینامیک در شبکه به قسمتهایی که clustor‌‌ نامیده می‎شوند سازماندهی می گردند ،‌ سپس مجدداً این clustor‌ هادر کنار یکدیگر تجمع می کنند وSuperclustor‌ ها را می سازند وبه همین ترتیب ادامه می یابد .

سازماندهی یک شبکه به clustor‌ به نگهداری توپولوژی یک شبکه نسبتاً پایدار کمک می کند .

در شبکه هایی که عضویت در آنها و همچنین تغییرات در توپولوژی بسیار داینامیک باشد استفاده از cluster‌ ها کارایی چندانی نخواهد داشت .

- محاسبات غیر متمرکز(Decentralizad) در مقابل محاسبات توزیع شده (Distributed)

براساس اینکه چگونه و در کجا یک مسیر محاسبه می شود 2 بخش برای پروتکلهای مسیریابی به وجود می آید . محاسبات Decentralized و محاسبات توزیع شده .

در یک پروتکلی که بر اساس محاسبات Decentralized باشد ،‌ هرنود در شبکه از اطلاعات کاملی راجع به توپولوژی شبکه نگهداری می کند بطوریکه هر زمان که مایل باشد بتواند خودش یک مسیری را به سمت مقصد مورد نظر محاسبه کند . برخلاف آن ،‌ در پروتکلی که بر اساس محاسبات توزیع شده باشد هر نود در شبکه فقط قسمتی از اطلاعات مربوط به توپولوژی شبکه را نگهداری می کند . هنگامیکه یک مسیری نیاز به محاسبه داشته باشد ،‌ تعداد زیادی از نودها با هم همکاری می کنند تا آن مسیررا محاسبه کنند .

- Source Routing درمقابل hop- by-hop Routing

بعضی از پروتکلهای مسیریابی کل مسیر را در header‌ مربوط به بسته های اطلاعاتی قرار می دهند بنابراین نودهای میانی فقط این بسته ها را بر طبق مسیری که در header‌ شان وجود دارد forward‌ می‎کنند . به چنین مسیریابی ،‌ مسیریابی از مبدأ یا Source Routing گفته می شود . مزیت این گونه مسیریابی ها در این است که نودهای میانی نیازی ندارند که اطلاعات مسیریابی بروز شده را نگهداری کنند چون خود بسته ها شامل تمام تصمیمات مسیریابی می باشند . بزرگترین مشکل این مسیریابی، زمانی است که شبکه بزرگ باشد ومسیرها طولانی باشند در این حالت قرار دادن کل مسیر در header هر بسته مقدار زیادی از پهنای باند را مصرف خواهد کرد . لازم بذکر است که مسیریابی Source Route ،‌ امکان تولید چندین مسیر را به سمت یک مقصد خاص فراهم می کند . در مسیریابی hop- by- hop ‌،‌ هنگامیکه یک نود بسته ای را برای یک مقصدی دریافت می کند ،‌ بر طبق آن مقصد بسته را به hop بعدی forward خواهد کرد . مشکل این است که همه نودها نیاز دارند که اطلاعات مسیریابی را نگهداری کنند وبنابراین این امکان وجود دارد که مسیرهای دارای حلقه شکل بگیرند .

-مسیرهای منفرد در مقابل مسیرهای چندگانه

بعضی از پروتکلهای مسیریابی یک مسیر منفرد را از مبدأ به مقصد پیدا می کنند که این گونه پروتکلها معمولاً عملکرد ساده ای دارند . پروتکلهای مسیریابی دیگری نیز هستند که چندین مسیر را به سمت یک مقصد معین پیدا می کنند که مزیت آن قابلیت اطمینان بالاتر و همچنین بهبودی راحتتر در هنگام وقوع failure می باشد . علاوه بر این ،‌ نود مبدأ می تواند بهترین مسیر را از میان مسیرهای در دسترس انتخاب نماید .

مسیریابی ProActive در مقابل مسیریابی ReAvtive

بسته به اینکه چه زمانی مسیرها محاسبه می شوند ،‌ پروتکلهای مسیریابی می توانند به 2 بخش تقسیم شوند . مسیریابی ProActive و مسیریابی ReActive .

مسیریابی ProActive ،‌ مسیریابی Precomputed‌ و یا Table-Driven نیز نامیده می شود . دراین متد ،‌ مسیرها از قبل به سمت تمام مقصدها محاسبه می شوند . برای محاسبه مسیرها ،‌ نودها نیاز دارند که تمام ویا قسمتی از اطلاعات را در مورد موقعیت های لینکها و توپولوژی شبکه نگهداری کنند و برای اینکه این اطلاعات را بروز رسانی نمایند ،‌ احتیاج دارند که بصورت دوره ای ویا در زمانی که موقعیت لینکی یا توپولوژی شبکه ای تغییر کرد اطلاعاتشان را منتشر نموده و براساس اطلاعات بدست آمده جداولشان را نیز Update‌ نمایند . مزیت مسیریابی ProActive‌ این است که زمانی که یک مبدأ نیازمند ارسال بسته ای به مقصدی باشد ،‌ مسیر مورد نظر در دسترس است و هیچ اتلاف زمانی صورت نمی پذیرد . عیبی که برای این گونه مسیریابی ها مطرح می باشد این است که بعضی از مسیرهای تولید شده ممکن است هیچ گاه استفاده نشوند و همچنین اینکه در هنگامیکه تغییرات در توپولوژی شبکه سریع باشد ،‌ انتشار اطلاعات مسیریابی ممکن است مقدار زیادی از پهنای باند را مصرف نماید .

مسیریابی ReActive ،‌ مسیریابی On-Demand نیز نامیده می شود . دراین متد ،‌ مسیر به سمت یک مقصد وجود ندارد و فقط هنگامیکه آن مسیر مورد نیاز باشد اقدامات لازم جهت محاسبه آن صورت می پذیرد . ایده اصلی این نوع مسیریابی به صورت زیر است :‌

هنگامیکه یک مبدأ نیاز دارد که بسته ای را به سمت یک مقصدی بفرستد ،‌ ابتدا یک یا چند مسیر را به سمت آن مقصد شناسایی می کند که به این پروسه ‌، پروسه کشف مسیر و (‌Route Discovery) گفته می شود . بعد از اینکه آن مسیر یا مسیرها بدست آمدند ،‌ مبدأ بسته مورد نظر را از طریق یکی از آنها ارسال می کند . در طول انتقال بسته ها ،‌ ممکن است که بدلیل حرکت مداوم نودها در شبکه ،‌ مسیرها شکسته شوند .

مسیر های شکسته شده نیازمند بازسازی هستند . پروسه شناسایی شکست مسیرها و بازسازی آنها نگهداری مسیر و (‌Route maintenance) نام دارد .

مزیت اصلی مسیریابی On-Demand صرفه جویی در پهنای باند است زیرا از انتشار اطلاعات مسیریابی به صورت دوره ای و یا جاری نمودن این اطلاعات هنگامیکه تغییری در موقعیت لینکی اتفاق می افتد جلوگیری می کند.

مشکل اصلی این نوع مسیریابی تاخیر زمانی زیادی است که در ابتدا برای انجام عمل کشف مسیر باید انجام بگیرد .

لازم بذکر است که استراتژی دیگری نیز برای مسیریابی در شبکه های Adhoc‌ وجود دارد و این استراتژی ترکیبی از مسیریابی هایProActive‌ و ReActive‌ می باشد و اصطلاحاً به آن Hybrid می گویند . در این گونه پروتکلها یک شبکه به تعدادی ناحیه تقسیم می شود که از مسیریابی ProActive‌ در داخل این نواحی و از مسیریابی ReActive برای مسیریابی در بین نواحی مذکور استفاده می شود . این روش برای شبکه های بزرگی که تقسیم بندی نواحی در آنها انجام می گیرد بسیار مناسب و کارا است . به غیر از مکانیزم های فوق ،‌ مکانیزم مسیریابی دیگری نیز وجود دارد که Flooding نامیده می شود . در Flooding‌ ،‌ هیچ مسیری محاسبه و یا کشف نمی شود . یک بسته به تمام نودها در شبکه فرستاده می شود و انتظار داریم که حداقل یک کپی از بسته به مقصد مورد نظر برسد . ناحیه بندی می تواند برای محدودتر کردن سربارکاری در مکانیزم Floding استفاده شود .

این متد ساده ترین متد مسیریابی است زیرا نیاز به هیچ دانشی در مورد توپولوژی شبکه ندارد و عموماً برای ارسال بسته های کنترلی (‌اطلاعات مسیریابی )‌ استفاده می شود ،‌ نه برای ارسال بسته های اطلاعاتی .

هدف ما در این جا مطالعه برروی 2 دسته پروتکلهای Table- Driven‌ و On-Demand‌ می باشد . دراین راستا به بررسی خصوصیات و ویژگی های چند نمونه از پروتکلهای مسیریابی می پردازیم و آنها را بر اساس عملکردشان در دسته های ذکر شده فوق قرار می دهیم .


دانلود فایل بررسی سیستم تحریک و راه انداز ژنراتورهای نوع Ty 10546 در واحدهای گازی نوع V 94-2

ماشین سنکرون سه فاز، ماشینی دوار است متشکل از یک استاتور سه فاز که سیم پیچ شده است و در شکافهای هسته با فواصل یکنواخت چیده شده که مدار آرمیچری نامیده میشود
دسته بندی برق
فرمت فایل doc
حجم فایل 5289 کیلو بایت
تعداد صفحات فایل 95
بررسی سیستم تحریک و راه انداز ژنراتورهای نوع Ty 10546 در واحدهای گازی نوع V 94-2

فروشنده فایل

کد کاربری 1024

تحقیقی بر سیستم تحریک و راه انداز ژنراتورهای نوع Ty 10546 در واحدهای گازی نوع V 94-2

بخش اوّل

ژنراتور

ماشین سنکرون

ماشین سنکرون سه فاز، ماشینی دوار است متشکل از یک استاتور سه فاز که سیم پیچ شده است و در شکافهای هسته با فواصل یکنواخت چیده شده که مدار آرمیچری نامیده میشود.یک روتور با میدانی سیم پیچ که در شکافهای هسته توزیع شده و دریک مدار تک فاز قرار گرفته تحریک نامیده میشود.استاتور و روتور بوسیله فضای هوا (فرمینگ هو) از هم جدا میشوند که شکاف هوا نامیده میشود. اصل کار براساس پدیده اسنتاج الکترومغناطیسی می باشد. جریان مستقیم که در میدان تحریک درجریان است، میدانی مغناطیسی ساکنی را تولید میکند. وقتی که میدان تحریک می چرخد، حوزه مغناطیسی برای استاتور بعنوان یک حوزه مغناطیسی دوار ظاهر میشود که در سطح تغییر میکند. با بیرون آمدن از قطبهای روتور، جریان (فلو) مغناطیسی، درون دندانه های استاتور جریان می یابد و مدار مغناطیسی بر روی یوغ استاتور بسته میشود.


کنداکتورهای استاتور، روی شیارهای استاتور قرار گرفته اند در عمقی که یک میدان مغناطیسی متغیر درآن وجود دارد که ولتاژ القاء شده طبق قانون لنز بدست می آید.فرمول(1-1)

درحالیکه φ فلوی عبوری را نشان می دهد.برای مصارف صنعتی ، تا جایی که ممکن است ولتاژ باید سینوسی شکل باشد.براین اساس، کارهای ذیل انجام میگیرد 1-توزیع سیم پیچ در شیارهای بیشتری در قطب هر فاز2-.اتصال قسمت اکتیو هر کویل3- در مسیری کوتاهتر از هر قطب.

تعداد قطبهای یک ماشین سنکرون، براساس سرعت مکانیکی و فرکانس الکتریکی در ماشینی که آماده بهره

برداری است تعیین میگردد. سرعت سنکرونی یک ماشین سنکرون، همان سرعت در ماشینهایی میباشد که بطور نرمال تحت شرایط یکنواخت و بالانس کار میکنند و با این فرمول داده میشود :فرمول (1-2)


در اینجا :

n = سرعت دور موتور در دقیقه

f = فرکانس الکتریکی در هرتز

p = تعداد قطبها

بنابراین ماشینهای سنکرون توسط سرعت دواری (ریتینینگ) مشخص میگردند که وابسته به فرکانس شبکه ای است، آنها به هم متصل می باشند و عملا“ ثابت هستند، و سرعت سینکرونیزم نامیده میشوند

. دور نمائی از ژنراتور

ژنراتور که براساس قرارداد طراحی شده ، ماشینی است دارای سیستم خنک کننده هوا، با یک جفت قطب با روتور سیلندری ، که تهویه آن بصورت مدار بسته توسط مبدلهای حرارتی هوا به آب انجام میگیرد که در قسمت پائین پوسته استاتور جای گرفته است. (شکل 1 را ببینید). یک فرورفتگی کوچک به عمق تقریبی هزار میلیمتر مسیر هوای خنک را کامل مینماید. ژنراتور توسط روتور به توربین گازی V94.2 متصل شده است.

استاتور:اجزای اصلی استاتور عبارتند از :

1)پوسته

2)ورقه های هسته شامل سیم پیچ

اتصال قسمتهای انعطاف پذیر هسته استاتوردر پوسته

پوسته:پوسته که از فولاد ساخته شده ، شیار افقی است که در بالا و ته به دو نیمه مساوی تقسیم شده است. ورقه های هسته، اولین باندول ایجاد شده است که در نیمه پائینی پوسته گذاشته میشود و سپس

نیمه بالایی با پیچ روی آن محکم میگردد. هر دو قسمت ، نیروها را به فونداسیون انتقال میدهند و جریان هوای خنک را هدایت میکنند. برای این منظور آخر، سرپوشهایی در انتهای آنها بکار میرود. سرپوش بیرونی ، مدار جریان خنک ژنراتور را از اطراف جدا می سازد، و سرپوش داخلی، محفظه ها را قبل و بعد از فن مجزا میکند (یعنی قبل از مکش و بعد از فشار)

ورقه های هسته شامل تعداد نسبتا“ زیادی بسته های ورقه شده نازکی است که بوسیله مسیرهای تهویه شعاعی هوا، جدا شده اند و عرض این کانالهای عبور هوا بوسیله فاصله گذار یک قسمتی و نقاط جوشکاری شده به یک قسمت محافظ، معین میگردند. هر ورقه هسته، شامل تلفات کم و غیرجهت دار

می باشد که اجزای آن از الکتروپلیت هایی که پوشش سیلیکون ساخته شده . اجزای آنها از رولهای ورقه فولادی هستند که مارک دار و مشخص هستند. آنها دندانه دار هستند و طرفین این ورقه ها با عایق وارینش پوشش داده شده اند که عایق وارینش با مقاومت دمای خاصی، از رزین مصنوعی با مواد معدنی ساخته شده است. در نتیجه ، مقاومت مابقی بالایی بین اجزاءنسبت به فرسودگی، بوجود می آید. هسته خودنگهدار، خارج از پوسته قرار دارد، زیگمنتها از یک سو لایه به لایه دیگر ، نیمه نیمه روی هم افتاده اند. اتصال کویلها در پشت هسته به دو منظور بکار رفته : آنها محل دقیق هر ورقه را و اتصال محکـــم به صفحه های پرس شده ای که به انتهای هر دو چسبیده شده اند را فراهم می آورد. این صفحه ها که از آلیاژ آلومینیوم آبکاری و سرد شده ساخته شده اند، با وجود آوردن یک پوشش خوب بین ورقه های انتهایی و انتهای

میدان پراکندگی، باعث کم شدن تلفات می شوند. (تلفات را در سطح کمی نگه می دارند). این صفحه های پرسی ، ندرتا“ شکلی به صورت بشقاب دارند و به شکل موثری مانند واشرهای بزرگ عمل میکنند. پرس

انگشتی هایی که بین صفحه پرس و انتهای صفحــــه جای داده شده اند، فشار اعمال شده را بوسیله صفحه پرس به هسته و خصوصا“ به دندانه های صفحه انتقال می دهند.

اتصال قسمتهای انعطاف پذیر ورقه های هسته:ورقه های هسته در پوسته بصورت فنری مونتاژ شده اند. در چنین حالتی ، بیشتر از لرزشهای هسته به فونداسیون فرستاده نمی شود. بنابراین با بکارگیری دو نقطه آویزان (معلق) هدایت و مستهلک میشود.

سیم پیچ استاتور

سیم پیچ استاتور، متشکل است از سه فاز، دو قطب، نوع رویهم و گام کوتاه.کویلها متشکل هستند از تعدادی استرند (کنداکتور) مسی توپر (جامد). هریک از این استرندها یا پیچکها توسط دو لایه داکرون اپوکسی و فیبرهای شیشه ای عایق بندی شده اند. یک دسته از استرندها (که کویل را تشکیل میدهد)، بر طبق روش روبل (ترانسپوزه) برای کاهش تلفات جریان چرخشی ، بهم پیچانده شده اند. عایق اصلی سیم پیچ استاتور تشکیل شده از نوار کاغذ میکا که روی آن از یک لایه فیبر شیشه که از قبل با رزین اپوکسی خورانده شده، تشکیل شده است. این نوار، بدور یکدسته از استرندها (کویل) پیچانده شده تا عایقی یکدست و یکنواخت را در طول شیارها و سوراخهای انتهای آنها ، ارائه دهد. حبابهای حبس شده هوا که در خلال نواربندی وارد کویلها شده اند توسط جریان گردشی وکیوم بیرون کشیده میشوند، و بعد با فشار و گرما برای پولیمرایز کردن رزین ها روبرو میشوند. در آخر ، سطح با نوار هادی کامل میشود که دارای ویژگیهای متفاوتی است در قیمت شیار و در پیشانی کویل، تا حفاظت کرونا مناس و درجه بندی بدست آید.

همچنین عایق بکار رفته شده دراین سیستم کلاس اف( f) می باشد و تحت شرایط بهره برداری ، عایق از خواص پایداری طولانی مدت الکتریکی و مکانیکی قابل توجهی برخورد است. بدنبال جاسازی آنها درون شیارهای استاتور، کویلها بوسیله پکیرهای موجی سمت هادی ، مسدود میشوند، بین ته و بالای کویلها ،

جداکننده ای جاسازی شده که در جایگاهی مطمئن ، سنسور جهت سنس نمودن درجه حرارت قرار گرفته است. با درمیان قرار دادن نوارهای فنری موج دار شعاعی، گوه ها ، کویلها را درون شیارها می بندند. این مواردآخریک نوار موج دار فنری تشکیل میدهد که باعث محکم نگهداشتن کویلها در شیارها میشود. سپس کویلها بوسیله جوشکاری خاصی ( که بریزینگ نامیده میشود) به یکدیگر متصل میشوند و با درپوشهایی که با خمیر عایق پرشده اند، عایق بندی میشوند. اتصال بین گروههای کویل توسط کویلهای

مسی عایق شده با همان سیستم عایق کردن یک کویل ، صورت میگیرد. ترمینالها از کویلهای مسی مربع شکلی (چهارگوش) هستند، با سوراخهایی برای بستن کابل (یا فلکسیبل) . سیستم عایق بندی کردن، خاصیت دای الکتریک قابل توجهی و حرارت خوبی به سیم پیچ میدهد. دارا بودن این مشخصات ، عمر زیادی را برای سیم پیچ گارانتی میکند. کلیه متریالهای استفاده شده در استاتور، از عایق کلاس F می باشند که دارای خاصیت شعله نگیر و خود خاموش کن هستند.

روتور

اجزای اصلی روتور عبارتند از :

1-بدنه روتور

2- سیم پیچ روتور

3-سیم پیچ خفه کننده (تضعیف کننده)

4-حلقه های جمع کننده (ریتینینگ رینگ)

5- هواکش ها (فن ها)

بدنه روتور:

از یک فولاد یکپارچه با آلیاژ مرغوب درست شده است و با چکهای لازم و زیادی که در هنگام ساخت توسط شرکت آنسالدو(طراح و سازنده نیروگاه) انجام میگیرد، خواص مغناطیسی ، شیمیائی و مکانیکی این قسمت مهم ماشین (بدنه) معین میگردد. اتصال با توربین، انجام شده است بوسیله ، یک آلیاژ یکپارچه که

در انتهای شافت قرار گرفته. جهت جاسازی سیم پیچ در بدنه روتور، شیارهای مربع شکلی داخل بدنه روتور برای سیم پیچها مهیا شده است. انتهای شافت یک منفذ محوری هم مرکز دارد که تا بدنه روتور امتداد می یابد و با دو سوراخ جهت اتصال جریان تحریک همراه است.

سیم پیچ روتور: دارای یک مسیر مستقیم خنک کننده است. که شامل کنداکتورهای توخالی و چهارگوشی است که از آلیاژ مس با 1/0 درصد نقره برای افزایش توان حرارتی ساخته شده اند. بالا رفتن حرارت هنگام بهره برداری ، باعث انبساط سیم پیچ روتور، بطور متقارن از وسط به طرف انتها به سمت بیرون میشود. کولینگ محوری، در افزایش درجه حرارت در مسیرهای شعاعی درون یک کویل، تفاوتهای اندکی را متضمن میشود به همین دلیل هیچ حرکتی از کنداکتور تحت شرایط ثابت و پایدار یا ناپایدار و گذرا اتفاق نمی افتد.

ساختار کل بدنه (مس + عایق) طوری طراحی شده که تمامی شیارها بعنوان یک واحد ، پرشده و گسترش پیدا میکنند و درمقابل گوه ، می لغزند که این لغزش با ضریب اصطکاکی پائینی صورت می پذیرد. این عمل به لرزش تحت شرایط بارگیری و بدون بار منتهی میشود.

یک لایه به شکل u که از ورق پلی آمید درست شده است درشیار بعنوان عایق بکار میرود، عایق سیم پیچ در انتهای سیم پیچ ، از همان متریال ساخته شده است.در شیار از پارچه فایبر گلاسی که با رزین اپوکسی دار اشباع شده ، استفاده میشود. در انتهای فاصله گذار سیم پیچ ، تکه هایی از پارچه فایبر گلاس که با رزین

اپوکسی اشباع شده ، استفاده میشود تا کویلها را دقیقا“ با توجه به هریک در جای خود قرار دهد و مسیر هوای خنک را مشخص کند.

همه متریالهای عایقی بکار رفته در روتور از عایق کلاس F می باشند که همه شعله نگیر و خودخاموش کن هستند.گوه ها که زبانه ای شکل هستند از آلیاژ مس ، نیکل با قابلیت هدایت بالایی ساخته شده اند و

برای مسدود کردن شیارها مورد استفاده قرار میگیرند، همچنین این گوه ها بخشی از سیم پیچ خفه کننده ( دمپر) هستند، که در قسمت بعد توضیح داده شد

سیم پیچ خفه کننده: کار فراهم نمودن یک مسیر مقاومت پائین است برای جریانهایی که بوسیله میدان دوار مربوط به روتور، بوجود می آیند و بدینوسیله باعث جذب جریان مخرب به هنگام ایجاد اتصال کوتاه میشود. سیم پیچ خفه کننده بوسیله گوه های شیار سیم پیچ، شکل گرفته اند که از آلیاژ مس، نیکل با قابلیت هدایت خوبی ساخته شده اند و هر تکه به تنهایی بدون قطع شدن ، در امتداد طول روتور میباشد. (درطور روتور بطور یکپارچه بهم متصل هستند). درمحل استقرار حقله های جمع کننده ، نیروی گریز از مرکز آنها را به یکدیگر می چسباند تا یک قفس خفه کننده کامل تشکیل شود. سیم پیچ خفه کننده برای محافظت از جریانات میدانهای معکوس مناسب میباشد.

حلقه های جمع کننده: روتور که از فولاد غیرمعناطیسی چدن، باکیفیت بالا ساخته شده اند، انتهای سیم پیچ را درجای خود بطور محکم نگه میدارند و آنها را از تغییر شکل پیدا کردن ناشی از نیروهای گریز از مرکز محافظت میکند. حلقه های جمع کننده روی بدنه روتور در یک حالت معلق، ناشی از عملیات حرارتی منقبض و جمع شده اند. آنها درمحور روتور قرار گرفته اند که بوسیله سیم نیزه ای بر روی دندانه ها قفل شده اند .بدلیل معلق بودنشان ، هیچ نیروی ناشی از انبساط حرارتی و سیم پیچها نمی تواند به شافت انتقال

یابد. در نتیجه این کار ، لرزش روتور از درجه حرارت سیم پیچ تبعیت نمی کند. متریال حقله های جمع کننده درمقابل خوردگی و شکنندگی مقاوم هستند. حلقه های جمع کننده ، اجزایی از ژنراتور هستند که

بیشترین فشار به آنها وارد میشود، بهمین منظور بوسیله شرکت سازنده ژنراتور و کارخانه آنسالدو تست های متعددی انجام میگیرد تا مطمئن شوند که خواص آنها با مشخصاتشان مطابقت دارند.

هواکشها: در طرفین شافت هواکشهایی وجود دارد که قسمت میانی هواکش روی سطح شافت جمع (براساس حرارت) شده است. پره های هواکش (فین) از آلیاژ آلومینیوم سخت ساخته شده ، زاویه های آنها برای سرعت چرخشی مناسب است و از طریق پیچ به محل اتصال هواکش ، متصل میگردد و جریان هوا را مطلوب می سازد.

سیستم خنک کننده:

دو هواکش محوری که با چرخش روتور به حرکت در می آیند هوای سیستم خنک کننده را تامین میکنند. دو مسیر پارالل هوای خنک وجود دارد که هر مدار بوسیله یکی از هواکشهای محوری تغذیه میشود. این مدارهای خنک کننده هوا ، از وسط ژنراتور قرینه هستند.

مسیر هوا خنک کن در استاتور:

برای هر نیمه ژنراتور، چهار محفظه تهویه وجود دارد. یک قسمت هوای خنک مستیقما“ بدرون شکاف موا بین روتور و استاتور فرستاده میشود، دراینجا به هوای خنکی که از انتهای سیم پیچ روتور بیرون می آید ملحق میشود، با یکدیگر از قسمت شکاف هوا عبور میکنند از داخل مسیرهای شعاعی در ورقه های هسته، و به اولین محفظه پوسته وارد میشود، از آن نقطه هوای گرم به سوی کولرها جریان پیدا میکند و به طرف فن (هواکش) برمیگردد. قسمت دیگر از درون انتهای سیم پیچ (پیشانی سیم پیچ) استاتور به طرف خارج جریان می یابد، ازخلال کانالهای محوری عبور میکند و وارد دومین محفظه پوسته میگردد. درآن نقطه به طرف داخل از طریق مسیرهای شعاعی درورقه های هسته، جریان می یابد، وارد شکاف هوا میشود و به

طرف بالا میرود. یک قسمت به طرف خارج از خلال مسیرهای شعاعی عبور میکند و وارد محفظه شماره 1 پوسته میگردد. قسمت دیگر به طرف مرکز ماشین جریان می یابد جایی که به هوای خنک روتور ملحق میگردد. یک قسمتت هوا از دومین محفظه پوسته ، از طریق کانالهای محوری، به طرف چهارمین محفظه

پوسته هدایت میشود و از آن نقطه در یک سمت شعاعی به طرف شکاف هوا جریان پیدا میکند درجایی که با هوای خنک روتور درهم ادغام (میکس) میگردند.هوای خنک از محفظه دوم و چهارم پوسته جریان می یابد و هوای خنک روتور از خلال مسیرهای شعاعی بطرف محفظه سوم پوسته بیرون می آید. از آن نقطه هوای گرم از طریق کولرها به عقب جریان می یابد و سپس به طرف فن (هواکش) باز میگردد.

مسیر هوای خنک درروتور: مسیر هوای خنک درروتور ، بواسطه چرخش روتور بوجود می آید. مجریا خروج هوا از مجرای ورود، شعاع بزرگتری دارد، ‌به همین دلیل فشار لازم برای تولید جریان هوا را بوجود می آورد. هوای خنک بین شافت و رینگ مرکزی (حلقه مرکزی) وارد روتور میشود و به داخل محفظه انتهای سیم پیچ (پیشانی سیم پیچ) جریان می یابد. در مجرای ورود به سمت شیارها ، هوا به درون کنداکتورها وارد میشود و آنجا بدو قسمت جریان پیدا میکند. یک قسمت بدرون کنداکتورها در شیارها ، جریان می یابد و به مرکز روتور میرسد. درآنجا بیرون می آید و از طریق سوراخهای شعاعی شیاربندی نشده در کنداکتورها و شکافهای منتهی به گوه ها به شکاف هوا میرسد. دومین قسمت درون کنداکتورها در انتهای سیم پیچ (پیشانی سیم پیچ) جریان می یابد به محورهای قطبها میرسد، از کنداکتورها میگذرد و از طریق شیارهای کوتاه در انتهای بدنه روتور به طرف شکاف هوا بیرون می آید

فیلتر های جبران کننده هوا

در سیستم خنک کننده بسته ، که توسط فن های طرفین روتور بوجود آمده است، نشتی هوا به بیرون اجتناب ناپذیر است. در انتهای نواحی، جایی که فشار مضاعف غالب میشود هوا میتواند به طرف بیرون نشت پیدا کند. (درجهت فشار فن). در نواحی، جایی که وکیوم غالب میشود هوا میتواند به طرف داخل

کشیده شود( درجهت مکش فن) . بهرحال نباید بخاطر جابجایی هوا، مسیر هوا از طریق درزها و ترکها وارد ژنراتور شود، ورودی هوای جبرانی بداخل ژنراتور، باید کنترل گردد از طریق دریچه های بخصوصی که به این منظور فراهم آمده اند. این دریچه ها در نواحی ساخته شده اند که دارای (مینیمم) حداقل فشار

ثابت می باشد، بطور مثال در نواحی که هوا سریعا“ به طرف فن جریان پیدا میکند. بمنظور جلوگیری از واردشدن هوا به ژنراتور در زمان جابجایی هوا، دریچه های هوا به فیلترهای مجهز شده اند که به کاورهای بیرونی متصل شده اند. در بازدیدهای دوره ای تعمیرات، فیلترها باید تمیز شوند و یا بیرون آورده شده و تعویض گردند.

کولرها: مبدلهای حرارتی از نوع سطح میباشند که برای خنک کردن هوا، در پشت ژنراتور قرا رگرفته اند، در کولرها آب، هوای گرم شده را خنک مینماید. کولرها شامل چهار المنت (عنصر) هستند، آنها در قسمت پائینی پوسته بطور افقی قرار گرفته اند و جریان آب و هوا در کولر بصورت پارالل می باشد. هر المنت از تعداد نسبتا“ زیادی لوله های راست تشکیل شده که بمنظور تبادل حرارتی، در سطح مجهز به فین هایی (سیمهای نازک) در سطح خارجی میباشند.آب خنک درون لوله ها جریان می یابد و هوای ژنراتور توسط آب از طریق سطح بیرونی خنک میشود. هر دو طرف لوله ها، در محفظه های آب محکم شده اند. محفظه های آب بدو بخش ورودی آب و خروجی آب تقسیم شده است. که دریک جهت متقابل نسببت به جریان هوا قرار گرفته است.

یاتاقانها: در قسمت انتهایی هر ژنراتور، یک پایه یاتاقان جوشکاری شده وجود دارد. پوششهای یاتاقان که از نوع پاکتی می باشند و بطور افقی به دو نیمه شده اند، روتور را محافظت میکنند. وقتی روتور می‌چرخد، یک فیلم روغنی که توسط فشار هیدرولیک (موتور پمپ) تامین مشود با روتورها را مهار میکند و یاتاقان را از سابیدگی محافظت مینماید. فواصل یاتاقانهای نوع ژورنال طوری قرار گرفته اند که حداقل قابلیت اطمینان بهره برداری را در فضای کم و افت اصطکاک پائین ارائه دهند. دیوارهای یاتاقان از فولاد ساخته

شده اند که سطح داخل آنها با یک آلیاژ فلز سفید سیار بندی شده است. جهت مرکزیابی یاتاقان از چهار صفحه تبدیل که بدور محیط یاتاقان هستند استفاده میگردد، رینگ یاتاقان در مکان خود توسط درپوش یاتاقان نگه داشته میشود. بمنظور اجتناب از ورود روغن به ماشین، یاتاقانه از پوسته استاتور جدا هستند و

بوسیله دو لایه آب بندی از نوع لایبرنیت آب بندی میشوند.برای جلوگیری از عبور جریان شافت به داخل یاتاقانها، یاتاقان روی پایه غیرمتحرک، دو لایه عایق دارد که این دو لایه عایق متشکل است از صفحه تبدیلهایی که متریال عایق بندی دارند و یک لایه بین یاتاپان و رینگ یاتاقان قرار گرفته است.

روغن کاری :از درون سوراخهایی در محفظه یاتاقان و روزنه ورودی جانبی، روغن وارد یاتاقان میشود. از روزنه ورودی روغن، روغن عبور میکند و به ورودی روغن دیواره یاتاقان میرسد. به هر دوسطح خارجی، روغن خارج از یاتاقان ، بر کل محیط شافت جریان می یابد.

کنترل نظارت حرارتی توربین:

درجه حرارت فلز یاتاقان، معیار مناسبی برای نظارت و کنترل کردن بر طرز عمل صحیح یاتاقان.

با استفاده از عناصر اندازه گیری دما، درجه حرارت در نیمه پائین محفظه یاتاقان اندازه گیری میشود. با افزایش درجه حرارت ، سیگنال آلارم و تریپ توربین انجام میگیرد.

رینگهای لغزشی و نگهدارنده های ذغالی :

رینگهای لغزشی و نگهدارنده های ذغالی ، جریان تحریک را از سیستم ساکن و ثابت تحریک به سیم پیچ میدان چرخشی انتقال میدهند. رینگهای لغزشی شیاردار هستند و در قسمت انتهای غیرمتحرک روی یک شافت قرار گرفته اند، یک لایه عایق در شافت تعبیه شده و رینگهای لغزشی درون آن برای قفــــل کردن آنها درمکان خودشان متصل شده اند. نگهدارنده های ذغالی با پوسته با یکدیگر بر روی یک صفحه مونتاژ شده اند. ذغال و رینگهای لغزشی را میتواد از درون پنجره هایی در محفظه مشاهده نمود. ذغالها از گرافیت طبیعی ساخته شده اند و بدون وسایل اتصال هستند (به چیزی متصل نیستند) و نیازی به روغنکاری ندارند

و درکف در نگهدارنده های ذغالی فنری مارپیچی شکلی که فشار یکنواختی را در سراسر نواحی سابدیه شده تولید میکند، نشانده شده اند. ذغالها را میتوان هنگام بهره برداری بیرون آورد و تعویض کرد. بمنظور سهولت ، نگهدارنده های ذغالی روی دستگاهی با وسیله اتصال دو شاخه ای مونتاژ شده اند. اتصالاتی روی

پایه های (راکر) ذغالی طراحی شده به شیوه ای که خاصیت قطبی آنها را میتوان معکوس کرد که نتیجه معکوس نمودن این است که سابیدگی رینگهای لغزشی غیریکنواخت و نامتناسب نباشد.جهت تهویه و خنک سازی پوسته رینگهای لغزشی ، یک هواکش شعاعی تعبیه شده که در مداری باز با مکش هوا از زیر، به طرف فیلترهای یک طبقه ای پارچه ای ، بر روی شافت عمل میکند دراین حالت هوا در بالا تخلیه شده . فیلترها تصفیه موثر برای گرفتن مقدار گردو خاک و آلودگی های شیمیائی و یا عوامل محیطی که ممکن است در شرایط سایت در هوا وجود داشته باشند را فراهم میکند، اختلاف فشار باعث اتصال سویچ و مونیتور میگردد. زمانیکه کلیدهای قطع و وصل اختلاف فشار عمل میکند و همچنین هنگام بازدیدهای دوره ای تعمیرات، فیلترها مورد بازرسی قرار میگیرد.

بهره برداری

این دستورالعملها برای توربوژنراتورهایی که بکار میروند که بوسیله هوا خنک میشوند (مثلا“ هسته استاتور، سیم پیچ استاتور، سیم پیچ روتورکه همگی بوسیله هوا خنک میشوند) وشرایط نرمال بهره برداری را تشریح میکنند و نقشه راهنمای اصلی را به هنگام راه اندازی یا تریپ واحد ارائه میدهند آنطور که از وضعیت غیرنرمال و زیان آور برای راه اندازی اجتناب شود.

بهره برداری کلی

برای بهره برداری صحیح از توربوژنراتور، کاملا“ ضروری است که از ژنراتور برای بهره برداری در محدوده های نمودار بارگیری قدرت استفاده کنیم زیرا پارامترهای معینی باید طبق وضعیتهای ذیل بکار گرفته شود.

فهرست

ژنراتور 2

ماشین سنکرون 4-3

دور نمائی از ژنراتور 4

استاتور 4

پوسته 5

سیم پیچ استاتور 6

روتور 7

بدنهء روتور 8

سیم پیچ خفه کننده 9

حلقه های جمع کننده 10-9

هوا کشها 10

سیستم خنک کننده 10

مسیر هوا خنک کن در استاتور 11-10

مسیر هوا خنک کن در روتور 11

فیلترهای جبران کنندهء هوا 12-11

کولرها 12

یاتاقانها 13

روغن کاری 13

کنترل نظارت حرارتی توربین 13

رینگهای لغزشی و نگهدارنده های زغالی 13

بهره برداری 14

بهره برداری کلّی 14

سیم پیچ استاتور 14

روتور 15

هسته استاتور 15

پایداری و تثبیت وضعیت 15

اختلاف انبساط سیم پیچ استاتور و هسته آن 15

لرزشها و ارتعاشات 16

راه اندازی ،بارگیری و تریپ 16

ملاحضات 16

پیش راه اندازی 17

اخطار 17

راه اندازی 18-17

دستور العمل های سنکرون شدن 18

بهره برداری به هنگام پارالل 19

تغییر در بار راکتیو 19

تریپ یا قطع مدار 19

تریپ نرمال 19

تنظیم اتوماتیک ولتاژ 20

تنظیم دستی ولتاژ 20

بهره برداری در فرکانس بالا 20

بهره برداری در فرکانس کم 20

خروج از حالت سنکرون 21

قطع میدان تحریک 22

صفحه

تریپ همزمان 22

تریپ ژنراتور 22

تریپ کلید اصلی ژنراتور 22

تریپ ترتیبی 22

تریپ دستی 23

برگشت اصلی وتریپ 23

برگشت دستی 23

حفاظت های ژنراتور 24-23

پلاک مشخصات ژنراتور 25-24

تصویر ژنراتور 26

بخش دوّم 27

مقدمه سیستم تحریک 29-28

تحلیل سیستم تحریک 31-30

پل تریستوری 31

ولتاژ ،جریان نامی 32

مقادیر نامی سیستم تحریک 33

مقادیر نامی ترانس تحریک 34

فیوز ها 34

اسنابر 35

کروبار 35

مقاومت تخلیه 36

حفاظت های کانورتر 36

فیوز 36

حفاظت ماکزیمم جریان لحظه ای 36

حفاظت اضافه جریان تأخیری 37

حفاظت جریان نامتعادل 38

قسمت کنترلی 40-39

کارت های سیستم 42-40

دیاگرام تنظیم 42

فاز شیفتر و طراحی آن 43

آتش گیت تریستور ها 46-44

تست تریستور وزوایای آتش آن 47-46

ساختار نرم افزا ر 48-47

توابع رگولاتور 49-48

کنترل ریداندانت 49

پایانهء عیب یابی 50-49

نرم افزار پی سی ترم 51

فشرده ای از سیستم تحریک با شبکه 63-52

تصاویر سیستم تحریک 65-63

بخش سوّم 66

سیستم راه انداز 67

سیستم راه انداز نیروگا ه 69-68

معایب و مزایا 69

مشخّصات سیستم 69

بررسی قسمت های مختلف سیستم 74-70

شرح عملکرد کارت ها 81 -75

مشخصات ترانس سیستم راه انداز 82

نحوهء عملکرد وحلقهء اصلی کنترل در سیستم راه انداز 86-83

حفاظت های داخلی پانل 87

حفاظت های خارجی پانل 87

خطای باس 89

تصاویر 94-90

منابع ومراجع 95


دانلود فایل سیستم های DCS و PLC کارخانه آلومینای جاجرم

در سیستم های قدیمی اتوماسیون اطلاعات مربوط به هر واحد باید از حمل آن به اتاق کنترل توسط کابل هایی انتقال می یافت با ازدیاد این واحدها حجم کابل هایی که به اتاق کنترل متصل می شدند نیز افزایش می یافت
دسته بندی برق
فرمت فایل doc
حجم فایل 1247 کیلو بایت
تعداد صفحات فایل 50
سیستم های DCS و PLC کارخانه آلومینای جاجرم

فروشنده فایل

کد کاربری 1024

سیستم های DCS و PLC کارخانه آلومینای جاجرم

فصل اول

DCS کارخانه آلومینای جاجرم

مقدمه ای بر DCS

(Distributed Control System) سیستم کنترل غیر متمرکز (گسترده)

در سیستم های قدیمی اتوماسیون اطلاعات مربوط به هر واحد باید از حمل آن به اتاق کنترل توسط کابل هایی انتقال می یافت با ازدیاد این واحدها حجم کابل هایی که به اتاق کنترل متصل می شدند نیز افزایش می یافت و بزرگترین اشکالاتی که این سیستم داشت عبارت بودند از :

1- تراکم انبوه کابل های ارتباطی در اتاق کنترل که به نوبه خود در هنگام عیب یابی سیستم مشکل آفرین بودند.

2- در هنگام بروز اشکال در اتاق کنترل کل سیستم فلج می شد.

3- در صورتی که کنترل سیستم گسترده ای مد نظر بود پردازنده مرکزی باید دارای حجم حافظه و سرعت بسیار بالایی می بود تا بتواند تمام داده های ارسالی و یا دریافتی را مورد پردازش قرار دهد و بدیهی است که با افزایش تعداد Point ها در سیستم فاصله زمانی سرویس دهی دوباره به هر Point نیز افزایش می‌یابد که از نظر کنترلی عیب بزرگی محسوب می شود.

در چنین شراطی بود که مهندسین به فکر افتاندند که اولا: تراکم کابل ها را در اتاق کنترل کاهش دهند. ثانیا: از مرکزیت به یک قسمت به عنوان کنترل کننده مرکزی جلوگیری کنند بدین منظور یک سیستم بزرگ صنعتی را به بخش های کوچک تقسیم کرده و کنترل آن قسمت را نیز به کنترلر مربوط به خودشان که در همان محل قرار دارد واگذار کردند که بدین ترتیب مفهوم کنترلر محلی(Locall Controller) شکل گرفت و تنها در صورتی که اطلاعات آن قسمت مورد نیاز دیگر قسمت ها واقع می شد و یا تغییر مقدار یک point در آن قسمت از طرف سیستم های بالا مد نظر بود توسط شبکه های ارتباطی این امر صورت می گرفت.

سیستم کنترل غیر متمرکز DCS

الف- اجزاء DCS

ب- نرم افزار DCS

ج- آدرس دهی DCS و Peerway

د- عیب یابی در سیستم DCS

هـ- کپی نقشه ها و کانالوگ DCS و Peerway

سیستم کنترل غیر متمرکز (گسترده) DCS

سیستم کنترل فریاند تولید آلومینا در شرکت آلومینای ایران(جاجرم) قسمت اعظم این فرآیند توسط سیستم DCS کنترل شده از یک اتاق کنترل مرکزی CCR و چهار اتاق محل 4 و 3 و 2 و 1 LCR و توسط این چهار اتاق محل تعداد زیادی از واحد های کنترلی کوچک که در آنها PCL تله مکانیک نصب شده توسط شبکه کابل نوری تبادل اطلاعاتی نموده و کل فرایند آلومینای تحت کنترل این سیستم های می باشد که در این فصل به اختصار و به طور خلاصه به توضیح و بیان کنترل DCS می پردازیم و توضیح اینکه DCS مخفف کلمه Distributed control system می باشد. LCR مخفف Local control Room می باشد و مدل DCS سیستم R.S3 شرکت Fisher Rosmount آمریکا می باشد.

الف- اجزاء اصلی DCS :

1- Peer way 2- Consoles 3-Control file 4- Input /Out put کارت 5- Peer way inter pace

سیستم کنترل و DCS و مجموع سخت افزار این کنترل به شرح ذیل بیان می شود:

ارتباط توسط شبکه شاه راه فیبر نوری بین این اجزا انجام شده و قسمت دوم مونیتورهای اپراتوری بوده که جهت نمایش و دریافت و ارسال اطلاعات محیط خارجی به سیستم برقرار می شود. وقت چهارم سیستم های رابط می باشد که مجموع کنترل فرایند DCS به صورت خط کمک یا اضافی یا Redundancy کار می کنند یعنی به محض معیوب شدن هر کدام از اجزاء فوق خط کمکی و مسیر اضافی به صورت اتوماتیک وارد مدار می شود. و اطلاعات همیشه در دو مسیر ارتباطی ارسال و دو نقطه همزمان پردازش می‌شود.

اجزاء کل DCS مدل RS3

1- Peer way 2- console 3- Control file 4- Peer way interface Devices

1- Peer way : یک شاه راه ارتباطی بوده که تمام تجهیزات و دستگاههای کنترلی از طریق این شاه‌راه(Peer way) به هم متصل(Link) می شوند و خاصیت Red undancy این سیستم peer way این امکان را به تجهیزات می دهد تا مستقیم و خیلی راحت با هم ارتباط داشته باشند و این بزرگراه ارتباطی که حالت Redundant کار می‌کند یعنی همیشه اطلاعات از دو مسیر در حال انتقال‌بوده و کار شبکه را در مواقع‌خرابی‌ شبکه راحت‌می‌کندو این‌شبکهPeer way در کارخانه‌آلومینا با کابل فیبرنوری‌انجام شده (Fiber optic cable) و تبادل اطلاعات شبکه به صورت سریال بوده که در تمام نقاط فرستندگی و گیرندگی(node) ها بایستی این پورت سریال نصب گردد. این کابل فیبر نوری در تمام مسیرهای ارتباطی بصورت دو خط که همزمان اطلاعات یکسان را تبادل کرده کار گذاشته شده اند و مسیرهای ارتباطی(F.O.C) کابل نوری بین PLC ها، [PLC25, PLC02, 04,05, 08, PLC23, PLC19, PLC15, PLC01,17,16,13,14] تا LCRها توسط کابل فیبر نوری انجام شده است یعنی ابتدا اطلاعات توسط یک سیگنال الکتریکی از واحد به اولین اتاق کنترل منطق PLC ها ارسال شده و از PLC به اتاق های کنترل محل (LCR1-4)DCS توسط کابل فیبر نوری ارسال می شود که این اطلاعات توسط پورت سریال RS-232 و ماژول SCm22 توسط PLC ها ارسال می شود.

اجزاء سخت افزار Peer way

1-1 کابل ارتباطی (F.O.C):

ارتباط اولیه Peer way با تمام وسایل و تجهیزات RS3 به صورت داخل متصل می شوند(Link) که اولین تجهیز این شبکه کابل ارتباطی می باشد که می تواند هر نوعی از کابل باشد نوع کابل استفاده شده در شبکه Peer way کارخانه جاجرم جهت ارتباط کنترلی کارخانه کابل فیبر نوری(Fiber Optic Cable) می‌باشد و انواع دیگر کابلهای ارتباطی مثل کواکسیل الکتریکی (Twinax) ، کابلهای ترکیبی نوری و الکتریکی باشد که کابل فیبر نوری یک کابل نوری (شیشه ای) دوتایی (Dual) بود که در طول تار شیشه ای نور منتقل شده و می تواند حجم زیادی را به خاطر بالا بودن سرعت نور به صورت سریال ارسال کند. تعداد Peer way 31 می توانند با کمک یک (HIAS) بهم وصل شدند.

High way interface adaptor

- HIA : دستگاهی رابط بوده که می تواند چند Peer way را به هم وصل کند.

- Peer way Tap : جهت اتصال node به شبکه کنترل و ارتباطPeer way از این دستگاه استفاده می‌شود.

- node :هر وسیله یا دستگاهی مثل کنسول، کامپیوتر شخصی، کنترل فایل را به شبکه کنترلPeer way وصل شود را node گویند.

نکته: تمام متعلقات Peer way و خود شبکه Peer way به صورت دو خطی یا Redundant می باشند (دوتایی)

و کابل استفاده شده در کارخانه جاجرم فیبر نوری و Tap های آن هم Fiber optic Peer way Tap می‌باشد و دوتایی می باشند.(Tap A,B)

2-1 Peer way Interface Devices :

این سیستم جهت ارتباط Peer way با اتاق های کنترل استفاده می شوند که شامل تجهیزات زیادی بوده که جهت این ارتباط مورد استفاده قرار می گیرند.

- Rosmount Network Interface : رابط بین شبکه کنترل RS3 و دیگر کامپیوترها می باشد.

Supervisery Computer Interface, SCI : یک رابط بین شبکه کنترل RS3 و واحد کامپیوتری (Host. computer) و یا بین کنترل RS3 و خود کنترل سیستم Rosemount می باشد.

- Tap Peer way : Tap: جهت ارتباط هر node (هر ورودی به شبکه فیبر نوری) Peer way از سیستم و دستگاه Peer way Tap استفاده می کند.

- node : هر سیستم کنترلی که به خط ارتباطی فیبر نوری یا هر شبکه ارتباطی وصل شود (اعم از ورودی یا خروجی) مثل کنترل فایل ها، کنسول ها، کامپیوترهای شخصی و ... خیلی دستگاههای دیگر که قابلیت ریختن اطلاعات به شبکه Peer way یا گرفتن اطلاعات از این شبکه ارتباطی شاه راه یا بزرگراه را داشته باشد node گویند.

انواع node

Control file –

Console –

Vax computer-

System resource unit (SRU)-

Vax Peer way-

RNI-SCI-

2- کنسول اپراتوری Consoles :

یک مونیتور رنگی 19 اینچ، صفحه کلید، برد و میکروپرسسور و کارت کیج های ارتباطی، هارد دیسک Video KPY board interface می باشد که به مجموع اینها کنسول اطلاق می شود که تعداد این کنسولها در کارخانه آلومینا به شرح ذیل می باشد؛ ضمنا این کنسول ها ساخت شرکت Fisher. Ros آمریکا بوده و مدل RS3 می باشد که در واحد CCR اتاق کنترل مرکزی 4 عدد کنسول وجود دارد؛ 1عدد جهت واحد مدیریت عملیات کارخانه (Dispaching) و 1 عدد جهت کنترل واحد تولید هوای فشرده واحد P422 و 2 عدد مجموعا جهت کنترل مستقیم واحد ترتیب و فیلتراسیون هیدرات (P416, 17, 17A) انجام می شود و تعداد 2 عدد کنسول در واحد LCR1 واحد انحلال، 2 عدد کنسول در واحد LCR4 (PU24) واجد بویلر و 2 عدد کنسول در LCR2 جهت کنترل واحدهای P412,13,14 (تبخیر سرد و گل قرمز) و 2 عدد کنسول در LCR3 واحد P421 تحت تکنسین نصب شده اند. در دیاگرام کنترل PLC و DCS این نمایش بخوبی معلوم می باشد.

3- کنترل فایل Control file :

کنترل فایل محل قرار گرفتن پروسسورها می باشد که در هر کنترل فایل این سیستم هشت عدد پروسسور قرار دارد که به آنها کنترلر گوئیم. که این کنترل پروسسورها وظیفه دریافت مقادیر ورودی و ذخیره اطلاعات و مقادیر لازم جهت استفاده NODE های دیگر را انجام می دهند و همچنین مقادیر دیتای ورودی را ارزیابی و پس از پردازش برای خروجیهای آنالوگ و دیجیتال ارسال می کنند.

نحوه ارسال اطلاعات در سیستم کنترل DCS شرکت آلومینا به این قرار است که ابتدا اطلاعات از واحد فیلد و MCCها و دیگر نقاط اندازه گیری و به اتاق های کنترل (LCR, PLC) ارسال شده و توسط کارتهای ایزولاتور DCS و PLC وارد شبکه کنترل می شوند که نمودار زیر بخوبی نشان می دهد. اطلاعات سپس وارد پانل ارتباطی ترمینال و از آنجا وارد کنترل فایل ها (پروسسورها) می شوند و در آنجا پردازش شده و تصمیم گیری می شود و از آنجا در صورت نیاز وارد شبکه Peer way می شوند.

کنترلر پروسسور چند منظوری مغز کامپیوتر می باشد که در واقع تمام محاسبات آنجا انجام می شود.

- Marshaling panel, flex terms, card cages : همه جهت ارتباط واحدهای فرایندی (فیلد) با سیستم DCS و چگونگی ارتباط سیگنال و ارسال آن به شبکه کنترل را انجام می دهند.

اجزاء تشکیل دهنده کنترل فایل Control file

- کنترل فایل شامل یکسری کارتهای مدادی بوده که وظایف حلقه کنترلی- مونیتورنیت پروسس، عملیات پردازش دیتاها را انجام می دهند و شامل کارتهای زیر است:

1-3 کنترل پروسسور چند منظوره

این کنترلر مقادیر زیادی ورودی را دریافت و ذخیره می کند و مقادیر خروجی را برای node های دیگر ارسال یا از آنها دریافت می کند و عملیات پردازش دیتا را انجام می دهد و مقادیر پیوسته (آنالوگ) و دیجیتال را پردازش و برای خروجیها ارسال می کند این کنترلر مغز کنترل و پردازش سیستم است و تمام عملکردهای آنالوگ و دیجیتال و محاسبات را انجام می دهد و این کنترلر پروسسور از طریق کابل RS-422 و Flexterm با Cardcage ارتباط داشته و اطلاعات را می گیرد. کارتهای مدادی کنترل فایل به دو گروه ساپورت کارت و کارتهای کنترلر پروسسور تقسیم می شوند.

2-3 Peer way Buffer card

این کارت ارتباط بافر الکتریکی و فرمت را با کنترل فایل و Peer way برقرار می کند و ارتباط بین تمام کنترلرهای هماهنگ کننده و Peer way می باشد. در هر کنترل فایل دو بافر موجود است.

3-3 Power regaluter card

این کارت تغذیه DC را برای همه کارتهای موجود در یک کنترل فایل برقرار می کند و این کارت ولتاژ تغذیه خود را از سیستم تغذیه USP گرفته و دارای دو خط ورودی بوده و به صورت Redundaut عمل میکند. ولتاژ ورودی این کارت 19 تا 36 ولت DC و ولتاژ خروجی و است.

4-3 کارت هماهنگ کننده Coordinator processor card

این کارت وظیفه مدیریت و هماهنگی ارتباط بین 8 کنترلر پروسسور دیگر را دارد و همچنین هماهنگی بین کنترل فایل Peer way و ورودی های پروسس و مقادیر محاسبه شده و خروجی هر کنترلر توسط این کارت هماهنگ و مدیریت می شود. تعداد این کارتها در کنترل فایل دو عدد بوده و بصورت Redundaut عمل می کند.

5-3 کارت Nonvolative Memory card

این کارت دیتای تمام کارت های کنترل پروسسورها و کارت هماهنگ کننده اطلاعات کانفیگور کردن و اطلاعات دیگر کنترل فایل در این کارت حافظه ذخیره می شود و هر کارت اطلاعات خود را از دست بدهد می توان این اطلاعات از دست رفته را دوباره از داخل حافظه این کارت احیاء و زنده کند.

- Redanduncy within controlfile

این یکی از مزیت های DCS می باشد که تمام کارتهای کنترلر پروسسور و کارتهای ساپورت (بجز کارتهای حافظه [Nonvolative memory])همه Redundaut بوده و به این معنا است که از هر مدل کارت دو تا مثل هم بوده و در دو slate (شیار) کنار هم قرار گرفته و به طور همزمان کار کرده و اطلاعات آنها مشابه بوده که در صورت خرابی هر کارت اطلاعات در کارت کناری پردازش و ارسال می شود برد اینکه سیستم متوقف شود تا دوباره کارت معیوب باز و تعمیر گردد و یا جایگزین شود.

4- کارتهای ورودی و خروجی سخت افزار و ترمینالهای ورودی و خروجی سیستم:

- کارتهای آنالوگ ورودی و خروجی

- کارتهای دیجیتالی ورودی و رخوجی

- MYX کارت: Multiplayer card cage

- RBL/PLC کارت: (Communication flexterm)

کارت آنالوگ:

هر کارت آنالوگ شامل هشت Slate برای کارت FIC می باشد و یک کارت کیج آنالوگ دو تا ورودی و یک خروجی را می تواند یا ساپورت کند و دارای سیستم Bypass جهت جریان و قابلیت (4-20mA) را دارا هستند و از جمله:

- ایزولاسیون الکتریکی برای Processor I/O

- مبدل آنالوگ به دیجیتال A/D, D/A

- یک کارت کیج آنالوگ ماکزیمم 24 تا ورودی و یا 8 تا خروجی می تواند داشته باشد.

Input Analog = 3×8=24

Out put Analog = 1×8 = 8

- این کارت ها به صورت نرم افزاری قابل برنامه ریزی می باشند.

کارت دیجیتال:

جهت ارسال و دریافت فرمانهای دیجیتالی از کنترل فایل به محیط خارج به صورت دیجیتال ارسال می‌شود که شامل کارت و ترمینال مارشلینگ پانل و cauntact کارت کیج می باشند.

ب- نرم افزار DCS مدل RS3 :

این نرم افزار بکار رفته در DCS نصب شده در شرکت آلومینای جاجرم به دو صورت 1- I/O block 2- Control Block مورد استفاده قرار گرفته است.

1- I/O بلاک ها (Input / Out put Block) وظیفه برنامه نویسی و برنامه ریزی دیتا و اطلاعات ورودی و خروجی فیلد(محیط خارجی) در این I/O بلوک ها انجام می شود یعنی محل نوشتن برنامه دیتای ورودی و خروجی از فیلد می باشد.

2- کنترل بلاک ها : وظیفه ارزشیابی و پردازش ورودی ها و خروجی های آنالوگ و دیجیتال را داشته که به صورت یک حلقه کانفیگور می شوند تا محاسبات و توابع کنترل را تشکیل بدهد و کنترل بلاک حداقل به یک I/O بلاک نیاز دارد تا یک حلقه کنترل را تشکیل داده و قلب این کنترل در کنترلر پروسسور می باشد. I/O بلاک ها و کنترل بلاک های نرم افزاری هر دو در کنترل پروسسور اول قرار داشته و مجموعا با (FIC) ها یک حلقه کنترلی را می سازند.